АС1 – n = 1; АС2 – n = 2; АС3, АС4 – n = 3
Из двух полученных результатов после определения
для дальнейших расчётов принимаем больший результат (как самый худший вариант).Если используется массивный контакт без накладок,
принимается равным 0,5.Если используются контактные накладки, то
принимается = 1.3 Определяется линейный износ контактов:
где
– линейный износ; – возможная площадка контактированияДля линейных контактов без накладок
Рисунок 1.21 – Точечный контакт
Рисунок 1.22 – Линейный контакт
Рисунок 1.22 – Плоскостной контакт: а –момент замыкания контакта, а–б– длина линий переката рычажного контакта в – ширина подвижного контакта
Для контактов, содержащих контактные накладки,
Рисунок 1.23 – Определение
для любой формы поверхностиРисунок 1.23 – Определение толщины изнашиваемого металла
После определения линейного износа необходимо выполнить контрольные мероприятия, если контакт рычажный без накладок, где коэффициент использования металла контакта в зоне
, не должен превышать 0,5, то линейный износ должен быть не более , т.е. – толщина неподвижного контакта, – толщина подвижного контактаДля контактов, содержащих контактные накладки (мостиковые, рычажные), где коэффициент использования ≈ 1 должно выполняться условие:
Н1, Н2 – толщина или высота контактных накладок на неподвижных и подвижных контактах.
Если указанные условия не выполняются, то необходимо произвести корректировку размеров контактов. Либо, в случае больших расхождений, расчёты контактного узла повторяются с самого начала, либо уменьшается электрическая износостойкость и увеличивается число замен контактов. После корректировки размеров контактов, определяется провал контактов:
Провал контактов используется как важный исходный параметр для расчёта контактных пружин.
14.2 Мероприятия по повышению износостойкости контактов
1 Выбор материалов контактов может быть произведён с учётом рекомендаций и условий эксплуатации контактов.
2 Уменьшение времени существования между контактами мостика расплавленного металла и дуги:
а) в общем случае желательно увеличивать начальную скорость расхождения контактов при размыкании, в некоторых случаях целесообразно принимать оптимальную скорость размыкания контактов;
б) необходимо выбирать оптимальную напряжённость магнитного поля в зоне размыкания контактов при наличии системы магнитного дутья, для обеспечения минимального линейного износа контактов.
Рисунок 1.24 – Зависимость линейного износа от напряженности магнитного поля
3 Уменьшение вибрации контактов при их замыкании.
4 Конструктивные мероприятия.
а) уменьшение площади изнашиваемой части контактов, в том числе за счёт изменения радиуса кривизны контактной поверхности;
б) обеспечение более равномерного износа контактов за счёт применения самоустанавливающихся контактов.
15. РАСЧЕТ КОНТАКТНЫХ ПРУЖИН
Большинство электрических аппаратов содержит в конструкции одну или даже несколько пружин, обычно это контактные или отключающие пружины. Пружины в электрических аппаратах выполняют ответственную роль и определяют основные характеристики аппаратов, поэтому их расчёт имеет большое значение. Для выполнения расчётов необходимо определить расположение пружины в механизме контактного узла или аппарата и взаимодействие их с другими частями аппарата. Выбор материала пружины необходимо производить исходя их общепринятых рекомендаций:
1 При относительно больших силах и небольших перемещениях (прогибах) целесообразно применять сталь.
2 При необходимости получения относительно больших перемещений (прогиба) при небольших силах применяют материалы с меньшими значениями модуля упругости, например, фтористую бронзу.
В зависимости от названия аппарата следует принимать повышенные или пониженные допустимые напряжения в металле. Например, для аппаратов распределительных устройств, работающих редко при износостойкости до нескольких десятков тысяч циклов, можно предусматривать наименьший коэффициент запаса. Для аппаратов управления и автоматики принимаются значения допустимых напряжений, а для особо тяжёлых режимов – пониженное допустимое значение напряжения в металле. Помимо указанного, необходимо также руководствоваться требованиями ГОСТов.
Наибольшее распространение получили витые цилиндрические пружины. Они могут в зависимости от размеров развивать усилия от долей до тысяч Ньютонов.
Рассмотрим принципы конструирования и проектного расчёта витых цилиндрических пружин на примере рычажных контактов.
15.1 Порядок проектирования
15.1.1 Эскизная проработка контактного узла в масштабе
Эскизная проработка выполняется после окончательного выбора размеров контактов, расчёта объёмного износа контактов, когда можно определить провал контактов, по известным силам конечного и начального нажатия. На этом этапе фактически формируется конструкция контактного узла, в частности производится выбор конструкции контакта держателя.
Рисунок 1.25 – Контакты:
– вектор силы контактного нажатия, – вектор силы контактной пружины, – длина плеча, на которое будет действовать вектор силы Fпр, – длина плеча, на которое будет действовать вектор силы .Величины
, устанавливаются в результате проработки контактного узла в масштабе.Исходными данными для расчёта параметров пружины служат
, (для мостиковых контактов в подобных ситуациях эти силы удваиваются), , длины плеч , .15.1.2 Построения нагрузочной характеристики пружины
Для этого выполняется привидение сил контактного нажатия и провала контакта
в точке О2, где действует проектируемая пружина. Про пересчёт действующих сил вводится кинематическая схема.Рисунок 1.26 – Кинематическая схема сил
, Н , НДля пересчёта перемещений вводится следующая кинематическая схема:
Рисунок 1.27 – Кинематическая схема перемещений
так как угол
один и тот же, то