Смекни!
smekni.com

Проектирование электромеханических устройств (стр. 14 из 21)

Рисунок 1.33 – Апериодический процесс восстановления напряжения


При апериодическом процессе восстановления напряжения, максимальное напряжение не может быть больше Uс.

16.4 Значения токов, для которых производится расчёт дугогасительного устройства

Значения токов назначаются с учётом зависимости времени горения дуги от величины отключаемого тока и категории применения аппарата.

Рисунок 1.34 – Зависимость времени горения дуги от величины тока отключения

1–область, где гашение дуги, в основном, определяется механическим растяжением, т.е. ЭДУ малы и основную роль играет раствор контактов.

3 – область значительных токов, где решающим фактором в процессе гашения дуги является ЭДУ, между областью 1 и областью 3 находится область с максимально возможным временем горения дуги 2 . Это область критических токов. Это объясняется невозможностью растяжения контактов.

Эта область может приходится на диапазон токов от 3 до 30 А, в зависимости от особенности аппарата и характера отключаемой нагрузки. В некоторых случаях область критических токов может достигать до 100 А.

4 – область отключения предельных токов, малое время горения дуги, за счёт малых ЭДУ. С учётом приведённой зависимости

при расчётах ДУ назначается ряд токов:

· токи из области критических токов (4 – 5 значений тока)

·

, проверка номинальных значений ДУ

·

, величина, которых устанавливается по категории применения аппарата, для определения предельных возможностей ДУ.

Максимальное время горения дуги

при расчётах должно быть ≤ 0,1 с, если это условие не выполняется, то расчёт ДУ начинается сначала.

16.5 Перенапряжения при отключении дуги постоянного тока

Рисунок 1.35 – Осциллограмма изменения напряжения и тока в дуге

При гашении свободной открытой дуги, а также гашения дуги в камере с широкой цепью, упрощённо считают, что ток в дуге спадает по линейной зависимости, поэтому

, где
– напряжение, возникающее за счёт ЭДС самоиндукции. Для свободной дуги и в случае камеры с широкой щелью:

,

а при гашении дуги в камере с узкой щелью

,

где: L – индукция отключаемой сети;

– время горения дуги при данных
и

– в общем случае называется напряжением отключения, которое принимается равным:
, где 1,1 – коэффициент, учитывающий возможные колебания напряжения в сети в большую сторону на 10%.

При расчёте дугогасительных устройств, необходимо учитывать возможность появлений перенапряжений, и должно соблюдаться условие:

, где
– испытательное напряжение для данного класса аппарата.

16.6 Учёт влияния индуктивности отключаемой цепи при расчётах дугогасительных устройств постоянного тока

Как было указано выше, во время горения дуги к отключаемому напряжению источника

добавляется ЭДС самоиндукции
, если принять, что при отключаемом токе
скорость изменения тока в течение времени горения дуги
– постоянно, т.е. ток в дуге спадает по линейной зависимости, то ЭДС самоиндукции будет равна:

т.е.

,

Поскольку при расчёте ДУ постоянного тока приближённо можно считать, что гашение дуги в индукционной цепи происходит как в цепи с активной нагрузкой, но при большем напряжении, то расчёт ДУ производится не по величине

, а по величине:
,
.

Рисунок 1.36 – ВАХ дуги постоянного тока для

и

16.7 Основные критерии правильности расчёта ДУ постоянного и переменного тока

Длина дуги не должна быть > 30 см,

, время горения дуги не должно быть больше 0,1 с,
.

Максимальное напряжение не должно превышать испытательное напряжение:

для постоянного тока

,
для переменного тока

Если при гашении дуги используется щелевая камера, то максимальная температура нагрева внутренних стенок камеры не должна превышать допустимой температуры для выбранного материала камеры:

.

16.8 Гашение свободной, неподвижной, открытой дуги постоянного тока механическим растяжением

Данный способ гашения электрической дуги используется для слаботочных электрических аппаратов вспомогательных контактов, а также приемлем для установления растворов контактов аппаратов управления.

Отключаемую способность контактов аппаратов характеризуют предельной мощностью коммутации:

.

Как известно, при увеличении

допустимый отключаемый ток для контактов уменьшается, поскольку мощность отключения принимается как постоянная величина.

Рисунок 1.37 –Графическая зависимость

Задачей расчёта является определение

, величина которого фактически определяет процесс гашения электрической дуги механическим растяжением. Этот способ дугогашения применяется для слаботочных аппаратов (контактов) в следующих случаях:

1) дуга не возникает;

2) дуга возникает.

В первом случае этот способ применяется при небольших растворах, которые принимаются по конструктивным соображениям, и при этом

.

Во втором случае

необходимо определять по графическим зависимостям, либо по империческим формулам. Графические зависимости устанавливаются для нескольких фиксированных зазоров, каждый из которых характеризует определённую отключающую способность аппарата.

Рисунок 1.38 – Графическая зависимость

при разных

Условия применения графических зависимостей для второго случая следующие:

1 – дуга открытая свободная (без специальных дугогасительных устройств) при атмосферном давлении воздуха.

2 – дуга гаснет за время не более 0,1 с

3 – при повышении напряжения на 10 ÷ 15 % при данном токе получается устойчивая дуга.

4 – разрыв цепи тока однократный, при наличии нескольких последовательных разрывов, например, при использовании мостиковых контактов, напряжение делится на количество разрывов.

5 – нагрузка от чисто активной до слабо индуктивной (Тэм не более 0,01 с) при большой индуктивности можно ориентироваться на графические зависимости, но при выборе раствора определять его по

.