Смекни!
smekni.com

Проектирование электромеханических устройств (стр. 4 из 21)

– исходный размер базового аппарата серии или отрезка.

При проектировании серий использование вышеприведенных зависимостей значительно упрощает расчеты. При этом можно пользоваться и другими зависимостями, позволяющими рассчитывать различные узлы, например электромагнитную систему, э.д.у. и т.д.

Если при проектировании серии можно использовать в качестве базовой существующую конструкцию аппарата без изменения его конструктивной схемы, целесообразно применять положения теории подобия и частного подобия.

Теория подобия применяется при трехмерной пропорциональности размеров.


8 ВЫБОР И РАСЧЁТ ОБЩЕЙ ИЗОЛЯЦИИ ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

8.1 Общие положения

Электрическая изоляция в значительной степени влияет на конструкцию аппаратов.

Электрическую изоляцию необходимо обеспечить:

· между частями, находящимися под напряжением и заземлёнными частями

· между токоведущими частями соседних полюсов

· между токоведущими деталями одного полюса, имеющими различные электрические потенциалы при полностью разомкнутых контактах

Уровень электрической изоляции в электрических аппаратах обеспечивается путём установления между частями разных потенциалов, необходимых:

· расстояний, зазоров, промежутков в окружающей среде (в воздухе, масле, газе и т.д.)

· размеров по поверхности и габаритных размеров изоляционных элементов, определяющих расстояние утечки, разрядные расстояния

· толщины изоляции деталей изоляторов, прокладок, барьеров и т.д.

8.2 Аппараты низкого напряжения

Электрическая изоляция аппаратов низкого напряжения должна выбираться такой, чтобы она выдерживала испытательное напряжение в течение одной минуты переменного тока частотой 50 Гц.


Таблица 1.4 - Испытательные напряжения аппаратов низкого напряжения

Номининальное напряжение ЭА, В Номининальное напряжение по изоляции, В Испытательное напряжение (действующее значение), В
12,24 до 24 500
36, 48, 60 до 60 1000
110, 127, 220 до 220 1500
380, 440, 500 до 500 2000
600, 660 до 660 2500
750 до 750 3000

Для повышения надёжности аппарата возникает желание увеличить изоляционные расстояния, однако чрезмерное увеличение этих расстояний приводит к увеличению габаритов, массы, стоимости аппаратов. Целесообразно руководствоваться минимальными расстояниями, которые регламентированы ГОСТ, для аппаратов низкого напряжения общепромышленного применения в зависимости от назначения цепи или аппарата, в зависимости от образования дуги при номинальных напряжениях от 100 до 600 В, минимальные электрические зазоры могут быть от 4 до 7 мм, а расстояния утечки – от 5 до 22 мм.

Рисунок 1.1- Направление тока утечки

При выборе изоляционной конструкции необходимо учитывать, что изоляция зависит не только от свойств материала, но и от наличия пыли, особенно влаги на поверхности. Для уменьшения габаритных размеров аппаратов и исключения непрерывного покрова токопроводящих осадков целесообразно на изоляционных деталях предусматривать ребра, выступы, впадины.

У аппаратов, работающих в тяжёлых условиях (тяговые аппараты), для работы в условиях угольных шахт, величины расстояний необходимо предусматривать большие расстояния, чем рекомендованы в [1, табл. - 2.2].

8.3 Аппараты высокого напряжения

Общие требования – изоляция аппаратов высокого напряжения должна выдерживать испытательное напряжение и при этом должен оставаться запас электрической прочности. Рекомендуемые по выбору испытательные напряжения приведены в [1, табл. - 2.3].

Величины испытательных напряжений в таблице указаны для нормальных атмосферных условий (температура +20 °С, 0,1MПа) при установке электрического аппарата над уровнем моря не более 1000 м для аппаратов с номинальным напряжением до 330 кВ и не более 500 м - для аппаратов с номинальным напряжением 500 кВ и более. При установке аппарата над уровнем моря на высоте, превышающей 500 и 1000 м, но не более чем на высоте 3500 м, их внешняя изоляция должна выдерживать испытательное напряжение, умноженное на корректирующий коэффициент, который определяется по формуле:

где: Н – высота над уровнем моря, м;

– для аппаратов, предназначенных для установки до 1000 м;
– для аппаратов, предназначенных для установки до 500 м.

Для аппаратов, работающих при максимальной температуре выше 35°С, испытательное напряжение должно быть повышено на 1% на каждые 3°С свыше 35°С. Если аппарат выдержал одномину1 мин. действия испытательного напряжения с учётом добавочных коэффициентов, то считается, что изоляция аппарата выбрана правильно. Кроме внешней изоляции в аппаратах высокого напряжения вводят понятие внутренней изоляции.

Изоляционное расстояние в аппаратах высокого напряжения можно разделить на внешнее, электрическая прочность которого зависит от атмосферных условий и на внутреннее, у которого электрическая прочность не зависти от них. В качестве примера рассмотрим баковый масляный выключатель.

Рисунок 1.2 –Баковый масляный выключатель:

S1- расстояние между внешним фланцем проходящей изоляции и крышкой бака;

S2- расстояние между токоведущими частями разных потенциалов в воздухе;

S1 и S2 – внешняя изоляция, изолирующей средой является воздух;

S3 и S6 – расстояние между токоведущими деталями и заземлённой частью аппарата;

S4 – расстояние между токоведущими частями разных потенциалов;

S5 – расстояние между разомкнутыми контактами.

При расчёте общей изоляции аппарата целесообразно предусматривать координацию уровней электрической изоляции отдельных элементов. Как указывалось ранее, изоляция аппарата должна выдерживать испытательное напряжение и при этом должен оставаться запас электрической прочности. Для воздушных промежутков это условие реализуется путём введения коэффициента запаса.

где:

– испытательное сухоразрядное напряжение;
определяется с рекомендацией ГОСТа; величина
– коэффициент запаса.

Для изоляционных промежутков, находящихся в масле, величина пробивного напряжения определяется с учётом корректирующего коэффициента координации уровней изоляции

. Величина
принимается в пределах
.

8.4 Порядок расчета общей электрической изоляции аппарата высокого напряжения

Характерные изоляционные промежутки в зависимости от конфигурации электрического поля, заменяют эквивалентной формой электродов типа: игла-игла, игла-плоскость, плоскость-плоскость и др.

По величине номинального напряжения определяется величина испытательного сухоразрядного напряжения с учётом условий работы.

По величине испытательного напряжения и рекомендуемых значений коэффициентов

и
определяется величина пробивного напряжения.

По экспериментально полученным зависимостям

для соответствующей конфигурации электродов и среды, определяется необходимое расстояние S1 и S2 и т.д.

Рисунок 1.3 – Зависимость разрядного напряжения

от расстояния между электродами
и их формой

9 ПРОЕКТИРОВАНИЕ ОБОЛОЧЕК ЭЛЕКТРИЧЕСКИХ АППАРАТОВ ЭЛЕКТРООБОРУДОВАНИЯ. СТЕПЕНИ ЗАЩИТЫ ОБОЛОЧКАМИ ЭЛЕКТРООБОРУДОВАНИЯ

Под термином электрооборудование надо понимать оборудование, предназначенное для производства, преобразования, распределения и потребления электрической энергии, а также электроприборы управления, защиты, контроля, измерения, сигнализации и т. д. Для нормальной работы электрических аппаратов в ряде случаев требуется применение специальных мер для защиты их от влияния окружающей среды. Это достигается применением оболочек. Оболочки должны изготавливаться из негорючих материалов.

Конструкция оболочки должна соответствовать условиям эксплуатации.

Прокладки между соприкасающимися частями оболочек предназначены для защиты от проникновения воды и пыли, должны изготавливаться из прочного, влагостойкого, а при необходимости и негорючего материала.

В соответствии с заданными условиями эксплуатации, оболочки должны иметь такое крепление крышек, которое обеспечивало бы быстрое и лёгкое их открывание, при этом болты должны быть невыпадающие. Защита от проникновения внутрь оболочки электрооборудования пыли и влаги через место ввода кабеля или проводов должна обеспечиваться либо уплотнением эластичного кольца, либо заливкой затвердевающей изоляционной массой.