Процес поширення коливань у суцільному пружному середовищі називається хвильовим процесом (або хвилею). При поширенні хвилі частинки середовища не рухаються разом із хвилею, а коливаються біля своїх положень рівноваги. Разом із хвилею від частинки до частинки середовища передається лише стан коливального руху і його енергія. Тому основною властивістю усіх хвильнезалежно від їхньої природи є перенос енергії без переносу речовини.
Серед різноманітних хвиль, які зустрічаються в природі й техніці, можна виділити такі їх типи: хвилі на поверхні рідини, пружні і електромагнітні хвилі. Пружні механічні хвилі виникають і поширюються лише в пружному середовищі. Пружні хвилі ще діляться на подовжні й поперечні. У подовжніх хвилях частинки середовища коливаються в напрямку поширення хвилі, у поперечних – у площинах, перпендикулярних до напрямку поширення хвилі.
Подовжні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях стиску і розтягу. Це означає, що поздовжні хвилі поширюються у твердих, рідких і газоподібних середовищ.
Поперечні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях зсуву, тобто фактично тільки у твердих тілах. У рідинах і газах виникають лише подовжні хвилі, а у твердих тілах — як подовжні, так і поперечні хвилі.
Пружна хвиля називається синусоїдальною (або гармонічною), якщо відповідні їй коливання частинок середовища є гармонічними. На рис. 21 показана синусоїдальна поперечна хвиля, яка поширюється зі швидкістю υ уздовж осі х, тобто показана залежність між зміщенням U(x,t) частинок середовища, у хвильовому процесі, і відстанню х цих частинок відджерела коливань для будь-якого фіксованого моменту часу t.
Приведений графік функції U(x,t) несхожий на графік гармонічного коливання. Графік хвилі (рис.1) показує залежність зміщення всіх частинок середовища від відстані до джерела коливань у даний момент часу, а графік гармонічних коливань — залежність зміщення даної частинки від часу.
Відстань між найближчими частинками, які коливаються в одній фазі, називається довжиною хвилі λ (рис. 1). Довжина хвилі дорівнює відстані, на яку поширюється фаза коливань за час в один період, тобто
(1)Рис. 1
Якщо розглянути хвильовий процес трохи докладніше, то стане ясно, що в хвильовому русі коливаються не лише частинки, розташовані уздовж осі х, а й сукупність частинок, розташованих у деякому об’ємі, тобто хвиля, поширюючись від джерела коливань, охоплює все нові і нові області простору. Геометричне місце точок, які коливаються в однаковій фазі, називається хвильовою поверхнею. Хвильових поверхонь можна провести безліч. Хвильова поверхня у будь який момент часу називається хвильовим фронтом. Для цього моменту часу хвильовий фронт може бути лише один.
Хвильові поверхні можуть мати довільну форму. В найпростішому випадку хвильові поверхні є сукупністю площин, або сукупністю концентричних сфер. Відповідно хвиля називається плоскою або сферичною.
6. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля
Якщо хвилі, поширюючись в пружному середовищі з кінцевою швидкістю, переносять енергію, то вони називаються біжучими. Перенос енергії в хвильовому русі кількісно характеризується вектором густини потоку енергії. Вектор потоку енергії вперше для механічних пружних хвиль був введений російським фізиком Умовим і називається вектором Умова. Напрямок вектора Умова збігається з напрямком переносу енергії, а його модуль дорівнює енергії, яка переноситься хвилею через одиничну площадку, розташовану перпендикулярно до напрямку поширення хвилі, за одиницю часу.
Для одержання рівняння біжучої хвилі ─ залежності зміщення коливної точки пружного середовища від координати і часу ─ розглянемо плоску синусоїдальну хвилю, допустивши, що вісь х збігається з напрямком поширення хвилі (рис. 21). У даному випадку хвильові поверхні, тобто поверхні однакової фази, перпендикулярні до осі х, а тому всі точки пружного середовища на цих поверхнях коливаються однаково. Зміщення будь якої точки пружного середовища від положення рівноваги в цьому випадку залежить лише від координати х і часу t, а його величина буде дорівнювати
Розглянемо деяку точку В, якаперебуває на відстані х від джерела коливань (рис. 1). Якщо коливання точок пружного середовища, які лежать у площині х = 0, описуються функцією U(0,t) = A cos
, то точка Впружногосередовища теж буде коливатися за тим же законом, але її коливання будуть відставати за часом від коливань джерела на τ, тому що для проходження хвилею відстані х потрібен час τ = , де – швидкість поширення хвилі. Тоді рівняння коливань частинок, які лежать у площині х, буде мати вигляд (2)де А – максимальне зміщення виділеної коливної точки В від положення рівноваги; ω – циклічна частота генератора коливань джерела.
Рівняння (2) є рівняння біжучої хвилі. Якщо плоска хвиля поширюється в протилежному напрямку, то
В загальному випадку рівняння плоскої синусоїдальної хвилі, яка поширюється без поглинання енергії уздовж позитивного напрямку осі х, має вигляд
(3)де А – амплітуда хвилі; ω – циклічна частота хвилі;
– початкова фаза коливань, обумовлена вибором початкових значень х і t; [ω (t - x/υ) + φ0] – фаза плоскої хвилі.В рівнянні (3) синусоїдальний характер хвилі характеризують хвильовим числом, яке дорівнює
(4)З врахуванням (4) рівняння (3) матиме вигляд
(5)Рівняння хвилі, яка поширюється в сторону менших значень осі х, відрізняється від (5) тільки знаком члена kх.
Розглянемо випадок, коли в процесі хвильового руху, фаза коливань не змінюється з часом, тобто
(4.6)Диференціюємо вираз (6) за часом, одержимо
,звідки
Отже, швидкість υпоширення хвилі в рівнянні (6) є не що інше, як швидкість переміщення фази хвилі, а тому її називають фазовою швидкістю.
Сферичні хвилі утворюються в однорідному і ізотропному середовищі від точкових джерел коливань. Якщо повторити хід міркувань для плоскої хвилі, можна показати, що рівняння сферичної синусоїдальної хвилі – хвилі, хвильові поверхні якої мають вигляд концентричних сфер, записується так
(7)деr – відстань від точкового джерела сферичних хвиль до виділеної точки пружного середовища.
У випадку сферичної хвилі навіть у середовищі, яке не поглинає енергії, амплітуда коливань не залишається постійною, а зменшується з відстанню за законом
Рівняння (7) має місце лише для великих r, які значно перевищуючі розміри джерела коливань (джерело коливань тут можна вважати точковим).З рівняння (3) можна одержати, що
тобто фазова швидкість синусоїдальних хвиль залежить від їхньої частоти. Це явище називають дисперсією хвиль, а середовище, у якому спостерігається дисперсія хвиль, називається дисперсним середовищем.
7. Одномірне хвильове рівняння. Швидкість поширення хвиль
Рівняння довільної хвилі є розв'язком рівняння, яке називається хвильовим.
Для виведення цього рівняння скористаємось рівняння плоскої хвилі, яка поширюється в напрямку осі х. Розглянемо ділянку пружного середовища, яке характеризується модулем пружності Е (рис. 2). З рисунка видно, що виділений елемент має переріз S і довжину Δх. Під дією зовнішньої сили F виділена ділянка пружного середовища деформується на величину ΔU.
Рис. 2
Оскільки середовище є пружним, то для виділеної ділянки можна застосувати закон Гука
(8)де Е ─ модуль Юнга;
─ відносна деформація; F ─ зовнішня сила; S ─ площа виділеної ділянки пружного середовища в напрямі осі х.