Смекни!
smekni.com

Пружні хвилі (стр. 4 из 4)

В граничному випадку при

, рівняння (8) запишеться так

(9)

Якщо збуджувати поздовжню хвилю в деякому пружному середовищі, яким є наприклад стержень перерізом S з модулем Юнга Е, то на виділену ділянку будуть діяти дві сили (рис.3). Запишемо для цієї ділянки другий закон Ньютона

(10)

Сили в рівнянні (10) є пружними силами, а тому відповідно до рівняння (9) запишуться так

(11)

Якщо підставити ці сили (11) в другий закон Ньютона (10), то після деяких перетворень одержимо

(12)

де m ─ маса виділеної ділянки пружного середовища.

Масу виділеної ділянки пружного середовища можна виразити через об’єм і густину речовини стержня так

m = ρSΔx. (13)

Рис.3

З урахуванням значення маси (13) і нескладних перетворень рівняння (12) запишеться так

(14)

Розглянувши граничний випадок при якому

, з рівняння (14) одержуємо рівняння, яке називається хвильовим рівнянням

(15)

Рівняння (15) є лінійним диференціальним рівнянням другого порядку в частинних змінних. Розв’язком такого рівняння є уже відоме рівняння плоскої хвилі

(16)

Знайдемо другі частинні похідні за часом t і координатою х від рівняння (16)

(17)

Після підстановки похідних (17) в рівняння (15) та необхідних скорочень одержимо

(18)

Але оскільки

, то хвильове рівняння (15) буде мати інший вигляд

(19)

Таким чином швидкість поширення механічних хвиль у пружному середовищі залежить від пружних властивостей цього середовища і його густини

(20)

Оскільки модуль Юнга характеризує стиснення або розтягування пружного середовища, то одержана швидкість (20) є фазовою швидкістю лише поздовжніх хвиль.

Фазова швидкість поперечних хвиль, які можуть існувати лише в твердому пружному середовищі, визначають заміною модуля Юнга в (20) на модуль зсуву G

(21)

Розрахунки показують, що в твердому середовищі модуль Юнга E майже на порядок перевищує модуль зсуву G, тому фазова швидкість поздовжньої хвилі тут більша за швидкість поперечної хвилі, тобто

(22)

Важливо відмітити, що для механічних хвиль, які мають велику довжину λ рівняння (15) і (19) будуть нелінійними.

Якщо механічна хвиля поширюється в однорідному ізотропному середовищі, то хвильове рівнянням буде мати вигляд:

(23)

Для механічних хвиль властивий принцип суперпозиції. Це означає, що при накладанні механічних хвиль відсутнє їх спотворення.

8. Енергія пружних хвиль. Потік і густина потоку енергії хвиль

Нехай в деякому пружному середовищі в напрямі осі х поширюється плоска поздовжня хвиля

. (24)

Виділимо в цьому середовищі елементарний об’єм ΔV, настільки малий, щоб швидкість хвилі

і швидкість деформації
у всіх його точках були однакові.

Повну механічну енергію, локалізовану у виділеному об’ємі розраховують за формулою

де

- кінетична енергія виділеного об’єму;
- потенціальна енергія пружної деформації цього об’єму.

Кінетичну енергію, яку має виділений об’єм пружного середовища знаходимо за формулою

, (25)

де ρ - густина середовища виділеного об’єму.

Першу похідну за часом від (24) підставимо в (25), одержимо

(26)

де

─ хвильове число.

У відповідності з рис. 4 потенціальну енергію пружної деформації виділеного об’єму знаходимо так:

Рис. 4

(27)

де k – коефіцієнт пружності середовища, який відповідно до закону Гука (8) дорівнює

;
─ величина деформації виділеного об’єму пружного середовища.

З урахуванням цих позначень (27) матиме вигляд

. (28)

Помножимо й поділимо (28) на Δх2, одержимо

(29)

В граничному випадку при Δх=0 одержуємо

(30)

Підставимо у формулу (30) значення модуля Юнга

, і швидкість деформації
, одержимо

(31)

Повну енергію, локалізовану у виділеному об’ємі пружного середо-вища, одержимо при додаванні кінетичної енергії (26) і потенціальної енергії (31)

(32)

Якщо врахувати, що середнє значення квадрата синуса за час в один період дорівнює

, то одержимо середнє значення повної енергії буде дорівнювати

(33)

де ΔV=SΔx─ елементарних об’єм пружного середовища.

Середнє значення густини енергії легко одержати, якщо (33) поділити її на величину виділеного об’єму пружного середовища

. (34)

Нехай через площадку S(рис.4), яка є перпендикулярною до напрямку поширення хвилі, за час Δtпереноситься енергія ΔW. Тоді вектор густини енергії буде дорівнювати

, (35)

де

─ вектор густини потоку енергії;
─ середня густина перенесеної хвилями енергії;
─ вектор швидкості, модуль якої дорівнює фазовій швидкості хвиль з напрямком поширення хвиль і відповідно переносу енергії.

Вектор потоку енергії

вперше одержав і розглянув видатний російський фізик Умов. На честь цього фізика він був названий вектором Умова.