Смекни!
smekni.com

Пуассон Симеон Дени (стр. 1 из 2)

ПУАССОН (Poisson) Симеон Дени (1781-1840), французский математик, механик и физик, иностранный почетный член Петербургской АН (1826). Труды по математическому анализу, теории вероятностей, математической физике, теоретической и небесной механике, теории упругости, гидродинамике и др.

* * *

ПУАССОН (Poisson) Симеон Дени (21 июня 1781, Питивье, близ Орлеана — 25 апреля 1840, Ско, пригород Парижа), выдающийся французский ученый, которого по праву считают одним из создателей современной математической физики. Его имя часто встречается в учебниках по математическому анализу и электромагнетизмау, теории вероятностей и акустики, квантовой механики и теории упругости. В истории науки Пуассон стоит в одном ряду с его выдающимися современниками — Лапласом, Лагранжем, Фурье, Коши, Ампером, Гей-Люссаком, Френелем.

Детские годы, учеба

О родителях Пуассона известно немного. Известно, что отец его был поначалу солдатом ганноверских войск, но его военная карьера не удалась. Из-за придирок и притеснений офицеров он бежал из армии и обосновался в маленьком французском городке Питивье. К моменту рождения сына он занимал скромную, но уважаемую должность нотариуса. Мальчик рос совершенно обычным, ничем не примечательным, и никаких особых надежд в раннем детстве не подавал. У родителей даже возникли сомнения по поводу его умственных способностей. Отцу, конечно, очень хотелось, чтобы его сын стал нотариусом, но семейный совет решил, что с этой работой ему не справиться и лучше ему стать врачом. Симеона отправили в городок Фонтенбло к дяде Ланфану для обучения достойному, но, в их понимании, простому ремеслу хирурга. Однако овладеть этой профессией оказалось нелегко. Чтобы научиться, например, делать кровопускания (один из основных методов лечения в то время), необходимо было в течение долгих часов упражняться в прокалывании иголкой жилок на капустных листах. В ненавистных упражнениях прошел почти год, дядюшка был доволен племянником, но первая же доверенная ему самостоятельная прививка закончилась смертью пациента. Это событие так потрясло юношу, что он наотрез отказался заниматься медициной и вернулся к родителям в Питивье. За время, пока Симеона не было дома, там произошли изменения: отец стал «государственным человеком», возглавив городскую общину. Семья переехала в другой дом, более приличествующий новому положению в обществе. Здесь жизнь стала оживленнее: приходило много людей, из Парижа стали поступать различные журналы и среди них «Журнал Политехнической школы». Читать его оказалось очень занятным для Симеона, еще занятнее было решать предлагавшиеся в журнале математические задачи. Неожиданно решение задач оказалось делом очень легким для мальчика, который нигде никогда этому не учился; он просто «щелкал» их одну за другой. Родители Пуассона быстро переменили мнение об умственных способностях своего сына и отправили его обратно в Фонтенбло, но на этот раз в школу. В школе Пуассон учился блестяще. Его дарование и трудолюбие позволили ему сильно оторваться от своих сверстников. Когда он выходил к доске, учителя уже знали, что сейчас они услышат много нового и интересного для себя, а ученики часто вообще мало что понимали. Два года спустя семнадцатилетний Симеон был принят в Политехническую школу (Ecole Polytechnique) в Париже, одно из самых лучших учебных заведений Франции. На эту школу, созданную по декрету революционного Конвента в 1794, возлагалась задача подготовки инженерных и офицерских кадров. Воспитанники Политехнической школы должны были занимать, в конечном счете, высшие технические и государственные должности. Срок обучения в Политехнической школе был сравнительно невелик — всего два года, интенсивность же обучения была очень высокой. В значительной степени выдающаяся роль Политехнической школы в развитии физико-математического образования связана с прекрасным педагогическим коллективом: среди профессоров школы в первые годы ее существования были известные ученые: Монж, Лаплас, Лагранж, Фурье, Карно. По существу все основные курсы и учебники математического анализа, геометрии и механики, на много лет предопределившие уровень математического образования (и не только во Франции), были созданы профессорами Политехнической школы. Лаплас и Лагранж гордились замечательными способностями Симеона Дени и занимались с ним особенно много. Пуассон в совершенстве знал труды многих своих предшественников, особенно подробно он изучал работы Эйлера и Д'Аламбера. Позднее друг и биограф Пуассона, выдающийся физик и тоже воспитанник Политехнической школы Франсуа Араго писал :«Пуассон никогда не имел надобности тратить время и силы на искание того, что уже было найдено». Не случайно поэтому, что уже в двадцать лет Пуассон сделал свои первые математические работы, сразу принесшие ему известность. Было бы, впрочем, неверно думать, что в студенческие годы, да и позже тоже, Пуассону были чужды нематематические интересы. Он был общительным и жизнерадостным человеком, очень любил и часто посещал театр, знал наизусть сочинения Мольера и Корнеля, трагедии Расина.

Научная и педагогическая карьера

Дальнейшая жизнь Пуассона также оказалась во многом связанной с Политехнической школой — здесь он прошел последовательно всю «иерархическую лестницу». По окончании курса обучения он был оставлен при школе репетитором, а в 1802 получил должность помощника профессора. В 1806 ушел из Политехнической школы великий Фурье; его профессорское место занял 25-летний Пуассон. В 1812 Пуассон был избран академиком Парижской Академии наук; с 1820 он — член Совета Парижского университета. Ему поручается наблюдение за преподаванием математики во всех колледжах Франции. В Политехнической школе Пуассона назначают экзаменатором абитуриентов. Должность экзаменатора была в определенном смысле выше обычной профессорской: принимая итоговые экзамены, он подвергал тем самым проверке и то, как усвоены знания воспитанниками Политехнической школы, и то, как и чему их научили профессора. Все сменяющиеся в те бурные годы правительства Франции с большим вниманием относились к научным заслугам Пуассона. Он получил титул барона, был награжден орденом Почетного легиона, стал пэром Франции. Получил Пуассон признание и за рубежом: он был членом всех научных обществ и академий Европы и Америки, в том числе почетным членом Петербургской Академии наук (с 1826). Пуассон, по словам Араго, «обладал еще одним достоинством, которым часто пренебрегают даже не высоко стоящие в науке: точностью исполнения своих обязанностей». Известно, например, что выпускные экзамены в Политехнической школе ежегодно отнимали у Пуассона четыре недели, в течение которых он должен был экзаменовать по девять часов в день.«Только однажды, — пишет Араго,— из приличия Пуассон отказался экзаменовать своего старшего сына, но воспитанники Политехнической школы, узнав об этом, послали к нему депутацию с объявлением, что они вполне верят его беспристрастию и просят не отказываться от экзамена». Педагогическую работу Пуассон любил, об этом говорит и его известное высказывание: «Жизнь украшается двумя вещами — занятием математикой и ее преподаванием». Лекции Пуассона отличались ясностью и глубиной. В последние годы жизни он поставил перед собой задачу написать фундаментальный курс математической физики. До конца выполнить эту задачу Пуассон, к сожалению, не успел.

Основные труды

О научных трудах Пуассона рассказывать очень непросто. Большая часть его работ (а всего их около 350) относится к математической физике, поэтому подробно обсудить здесь даже основные результаты этих работ мы не сможем. В то же время не упомянуть хотя бы о наиболее известных и важных работах Пуассона просто нельзя.

Одно из главных понятий в электростатике — это понятие об электрическом потенциале. Потенциал всегда зависит от величины и расположения зарядов в пространстве. Пуассон в 1811 вывел дифференциальное уравнение, связывающее потенциал с плотностью распределения зарядов. Простейшие задачи в электростатике можно, конечно, решать и не пользуясь уравнением Пуассона. Но для сколько-нибудь сложных задач, когда есть много зарядов и расположены они произвольным образом, рассчитать зависимость потенциала от координат можно только с помощью этого уравнения. Уравнение Пуассона, вместе с результатами Эйлера, Гаусса, Лапласа, Грина и Остроградского, лежит теперь в основе современной теории потенциала — важного раздела математической физики.

Значительны заслуги Пуассона в теоретической механике, в механике сплошных сред, теории теплопроводности, теории упругости. Изучал он вопросы, связанные с адиабатическим изменением состояния газа, с атмосферным электричеством, с измерением горизонтальной составляющей земного магнитного поля, с природой сил поверхностного натяжения, с распространением волн в глубоком бассейне. Были у Пуассона и «артиллерийские» заслуги. Он подробно исследовал задачу об отклонении снарядов от вертикальной плоскости, проведенной через направление ствола орудия. В астрономии он занимался исследованием устойчивости движения планет Солнечной системы, рассматривал задачи о возмущении планетных орбит и о движении Земли вокруг ее центра тяжести.

Ему принадлежит также много результатов в области чистой математики, особенно в дифференциальном и интегральном исчислении (интеграл Пуассона, формула суммирования Пуассона и др.), в теории дифференциальных и разностных уравнений. Нельзя, наконец, не сказать о существенном вкладе Пуассона в теорию вероятностей. Вслед за Лапласом он уделял большое внимание применениям теории вероятностей в...уголовном судопроизводстве. Один из его больших трактатов так и называется «Исследования о вероятности приговоров в уголовных и гражданских делах». Сейчас это может вызвать улыбку, но нельзя забывать, что и в этой работе решались вполне конкретные и строгие математические задачи. В работах Пуассона очень часто видно стремление связать формальные математические рассуждения не только с естественными науками, но и с общественно важными вопросами. Таков и его трактат «О преимуществе банкира при игре в тридцать и сорок». Вряд ли нужно осуждать Пуассона за стремление «помочь обогащению банкиров», лучше вспомнить о том, что теория игр, в том числе и азартных, была очень существенной для становления и развития теории вероятностей, а сейчас и сама стала самостоятельным и жизненно необходимым разделом математической науки.