Вместе с прогрессом общественных отношений и выдвижением технологической сферы и промышленного производства на передний план в социуме наука приобретает большое значение в отношении разработок новых технологий и рациональных принципов упорядочивания форм производственной деятельности. Обретают реальный смысл так же и теоретические исследования в области методологии науки. В работах О.Конта, Г.Спенсера, Э.Дюркгейма и других авторов разрабатываются уже не просто принципы общенаучного знания, но конкретные варианты методов научно-познавательной деятельности, причем во многом ориентированной на мир социальных связей и отношений.
Особое значение в становлении методологии науки имели исследования Дж. Буля, Г.Фреге, Ч.Пирса в области логико-математического знания. Эти авторы заложили основы формализации норм и процедур мыследеятельности, тем самым раскрыв пространство формализации и математизации логического знания и позволив использовать логико-методологические наработки естествознания в гуманитарных науках.
Не меньшее значение имело становление электродинамики, релятивистской и квантовой механики, поставивших под вопрос основы классической физики И.Ньютона. Открытия М.Фарадея, Дж. Максвелла, А.Эйнштейна, М.Планка и других ученых позволили не только внести ясность в природу некоторых фундаментальных явлений и процессов (электричество, свет и др.), но повлияли на область методических установок науки в целом. В частности, развитие квантово-релятивистской механики привело к возобладанию сугубо математических подходов к выдвижению и обоснованию теоретических положений. Такие положения служили уже не просто целям обобщения групп экспериментальных данных наблюдения, но выступали самостоятельными регулятивами научно-познавательного процесса. Выдвижение сугубо умозрительных конструкций стало признаваться равноправным участником научного исследования наряду с наблюдением и экспериментом и зачастую даже более предпочтительным, поскольку позволяло сокращать время между выдвижением теории, ее разработкой и внедрением в практику.
Все это привело к бурному прогрессу науки в ХХ веке, превращению ее из сугубо познавательного интереса любителей «чистой» истины в сферу профессиональных отношений, имеющих не малое влияние на экономическую жизнь общества (вплоть до трансформации науки в разновидность бизнеса).
Истина — это понятие, обозначающее качественную характеристику мысли (представления) либо суждения, которая позволяет считать их знанием. Истиной также может называться само знание (содержание знания) или сама познанная действительность. В целом истина есть универсальная категория, понятие, используемое, в частности, как в религии и философии, так и в рамках научного познания.
Впервые философское понятие истины введено Парменидом как противопоставление мнению. Основным критерием истины признавалось тождество мышления и бытия. Наиболее разработанной теорией истины в античной философии выступала концепция Платона, согласно которой истина есть сверхэмпирическая идея (вечный «эйдос истины»), а также вневременное свойство остальных «идей». Причастность человеческой души миру идей связывает душу с истиной. В средневековой философии Августин, опиравшийся на взгляды Платона, проповедовал учение о врождённости истинных понятий и суждений (в XVII в. эта концепция развивалась Р.Декартом). Начиная с XIII в. была распространена теория Фомы Аквинского, придерживавшегося учения Аристотеля и развивавшего это учение с позиции гармонического единства познающего разума и верующего (христианского) мышления.
До сих пор наиболее распространенной концепцией истины является корреспондентская или классическая концепция истины. Ее основные положения сформулированы Аристотелем, главное из них сводится к формуле истина есть соответствие вещи и интеллекта (лат. veritas est adaequatio rei et intellectus). В классическом смысле истина — это адекватная информация об объекте, получаемая посредством чувственного и интеллектуального изучения либо принятия сообщения об объекте и характеризуемая с позиции достоверности. Более упрощенная трактовка совпадает с таким тезисом: истина есть адекватное отображение действительности в сознании.
В основе методов естествознания лежит единство эмпирических и теоретических сторон. Они взаимосвязаны и обусловливают друг друга. Их разрыв или хотя бы преимущественное развитие одной за счёт другой закрывает путь к правильному познанию природы: теория становится беспредметной, опыт - слепым.
Методы естествознания могут быть подразделены на группы:
а) общие методы касаются всего естествознания, любого предмета природы, любой науки. Это - различные формы диалектического метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени, например метод восхождения от абстрактного к конкретному и другие;
б) Особенные методы также применяются в естествознании, но касаются не его предмета в целом, а лишь одной из его сторон или же определенного приёма исследований: анализ, синтез, индукция, дедукция. Особенными методами служат: наблюдение, эксперимент, сравнение и как его частный случай измерение. Исключительно важны математические приёмы и методы как особые способы исследования и выражения количественных и структурных сторон и отношений предметов и процессов природы, а также методы статистики и теории вероятностей;
в) Частные методы - это специальные методы, действующие либо только в пределах отдельной отрасли естествознания, либо за пределами той отрасли естествознания, где они возникли. Так, методы физики, использованные в других отраслях естествознания, привели к созданию астрофизики, кристаллофизики, геофизики, химической физики и физической химии, биофизики. Распространение химических методов привело к созданию кристаллохимии, геохимии, биохимии и биогеохимии. Нередко применяется комплекс взаимосвязанных частных методов к изучению одного предмета, например, молекулярная биология одновременно пользуется методами физики, математики, химии, кибернетики в их взаимосвязи.
8. Как возникают структуры из хаоса в неорганической и живой материях? Каковы условия их образования, приведите примеры из разных областей естествознания. Что такое синергетика и какого ее значение для современной картины мира?
В физической картине мира до 70-х годов XX века царствовали два закона классической термодинамики. Первый закон термодинамики (закон сохранения и превращения энергии) фиксировал всеобщее постоянство и превращаемость энергии. Закон констатировал, что в замкнутой системе тел нельзя ни увеличить, ни уменьшить общее количество энергии. Этот закон утверждал независимость такого изменения энергии от уровня организации животного, человека, общества и техники. Второй закон термодинамики выражает направленность перехода энергии, именно переход теплоты от более нагретых тел к менее нагретым. Иногда этот закон формулируют так: тепло не может перетечь самопроизвольно от холодного тела к горячему. Этому могут способствовать только затраты дополнительной работы.
В соответствии с классическими физическими представлениями в замкнутой системе происходит выравнивание температур, система стремится к своему термодинамическому равновесию, порядку, соответствующему максимуму энтропии. В физической картине мира принцип возрастания энтропии соответствует одностороннему течению явлений, т. е. в направлении хаоса, беспорядка и дезорганизации. Один из основателей классической термодинамики Р. Клаузис в своей попытке распространить законы термодинамики на Вселенную пришел к выводу: энтропия Вселенной всегда возрастает. Если принять этот постулат как реальный факт, то во Вселенной неизбежно наступит тепловая смерть. С тех пор, как физика открыла этот процесс рассеивания, деградации энергии, люди чувствовали «понижение теплоты вокруг себя». Многие ученые не соглашались с выводами Клаузиса. В. И. Вернадский утверждал, что «жизнь не укладывается в рамки энтропии». В природе наряду с энтропийными процессами происходят и антиэнтропийные процессы. Многие учение высказывали сомнение по поводу распространения второго закона термодинамики на всю Вселенную. Но в мире, как мы знаем, не только господствует тяга к тепловой или другой смерти. В мире постоянно идет процесс возникновения нового, эволюции и развития разного рода систем. Согласно эволюционной теории Дарвина, живая природа развивается в направлении усовершенствования и усложнения всё новых видов растений и животных. В обществе наблюдается процесс социального творчества, т. е. созидания нового. Спрашивается, как из всеобщей тенденции к энтропии, дезорганизации может появиться « порядок» в живой природе и социуме. Возникновение нового казалось невероятным чудом.
Ответить на вопрос, как происходит эволюция и возникновение в природе, как происходит организация порядка из хаоса, «решила» новая наука синергетика (совместно с новой неравновесной термодинамикой, теорией открытых систем).
Синергетика (греч. «синергетикос» -- совместный, согласованно действующий) -- наука, целью которой является выявление, исследование общих закономерностей в процессах образования, устойчивости и разрушения упорядоченных временных и пространственных структур в сложных неравноценных системах различной природы (физических, химических, биологических, экологических и др.).
Классическая термодинамика в своем анализе систем отвлекалась от их сложности и проблем взаимосвязи с внешней средой. По существу, она рассматривала изолированные, закрытые системы. Но в мире есть и открытые системы, которые обмениваются веществом, энергией информацией со средой. В открытых системах тоже возникает энтропия, происходят необратимые процессы, но за счет получения материальных ресурсов, энергии и информации система сохраняется, а энтропию выводит в окружающую среду. Открытые системы характеризуются неравновесной структурой. Неравновесность связана с адаптацией к внешней среде (система вынуждена изменять свою структуру), система может претерпевать много различных состояний неопределенность и т. д. Переход от термодинамики равновесных процессов, к анализу открытых систем ознаменовал крупный поворот в науке, многих отраслях научных знаний. В открытых системах обнаружен эффект самоорганизации, эффект движения от хаоса к порядку.
Немецкий физик Герман Хакен термином «синергетика» предложил обозначить совокупный, коллективный эффект взаимодействия большого числа подсистем, приводящих к образованию устойчивых структур и самоорганизации в сложных системах.
Конечно, феномен перехода от хаоса к порядку, упорядочения ученые знали и до этого. В качестве примеров организации порядка из хаоса в неживой природе можно привести авторегуляцию, принцип наименьшего действия и принцип Ле-Шателье. Было открыто самопроизвольное образование на Земле минералов с более сложной кристаллической решеткой. В химии известны процессы, приводящие к образованию устойчивых структур во времени. Примером является реакция Белоусова-Жаботинского, где раствор периодически меняет свой цвет от красного к синему в зависимости от концентрации соответствующих ионов.
В физике явления самоорганизации встречаются от атомных объектов и кончая галактическими системами. Появление лазера - организация порядка из хаоса. Атомы, внедренные в лазер, могут возбуждаться действием энергии извне, например, путем освещения. Если внешняя энергия недостаточна, лазер работает как радиолампа. Когда же она достигает мощности лазерной генерации, атомы, ранее испускавшие волны хаотично и независимо, начинает излучать один громадный цуг волн длиной около 300 000 км. Выделяя при этом очень большую энергию, передаваемую на большие расстояния. Атомная антенна начинает резонировать, все атомы начинают излучать согласованно, и волны совершают как бы одно коллективное движение.
Биологические и социальные системы поддерживают упорядоченные состояния, несмотря на возмущающие влияния окружающей среды.
Синергетика исследует особые состояния систем в области их неустойчивого состояния, способность к самоорганизации, точки бифуркации (переходные моменты, переломные точки).
Синергетические закономерности
Как же синергетика объясняет процесс движения от хаоса к порядку, процесс самоорганизации, возникновения нового»?
1. Для этого система должна быть открытой, и от точки термодинамического равновесия. По мнению Стенгерс, большинство систем открыты -- они обмениваются энергией, веществом информацией с окружающей средой. Главенствующую роль в окружающем мире играет не порядок, стабильность и равновесие, а неустойчивость и неравновестность, от есть непрерывно флуктуируют.
2. Фундаментальным условием самоорганизации служит возникновение и усиление порядка через флуктуации.
3. В особой точке бифуркации флуктуация достигает такой силы, что организации системы не выдерживает и разрушается, и принципиально невозможно предсказать: станет ли состояние системы хаотичным или она перейдет на новый, более дифференцированный и высокий уровень упорядоченности. В точке бифуркации система может начать развитие в новом направлении, изменить свое поведение. Под точкой бифуркации понимается состояние рассматриваемой системы, после которого возможно некоторое множество вариантов ее дальнейшего развития. Примером бифуркаций могут служить «выбор спутника жизни», '' ситуации выбора учебного заведения». Наглядный образ бифуркации дает картина В. М. Васнецова «Рыцарь на распутье».
4. Новые структуры, возникающие в результате эффекта взаимодействия многих систем, называются диссипативными, потому что для их поддержания требуется больше энергии, чем для поддержания более простых, на смену которым они приходят. В точке бифуркации система встает на новый путь развития. Те траектории или направления, по которым возможно развитие системы после точки бифуркации и которое отличается от других относительной устойчивостью, иными словами, является более реальным, называется аттрактором. Аттрактор- это относительно устойчивое состояние системы, притягивающее к себе множество «линий» развития, возможных после точки бифуркации. Случайность и необходимость взаимно дополняют друга в процессе возникновения нового.
5. Диссипативные структуры существуют лишь постольку, поскольку система рассеивает энергию, а, следовательно, производит энтропию. Из энтропии возникает порядок с увеличением общей энтропии. Таким образом, энтропия не просто соскальзыванием системы к дезорганизации, она становится прародительницей порядка, нового. Так из хаоса (неустойчивости) в соответствии с определенной информационной матрицей рождается Космос.
9. Опишите гипотезы происхождения планет Солнечной системы. Чем доказывается единовременное происхождение тел Солнечной системы? Поясните проблемы происхождения и эволюции Земли. Каково строение геосфер? В чем суть гипотез тектоники литосферных плит, дрейфа континентов?