где I— энергия ионизации соответствующей атомной оболочки. Если энергия hvдостаточна для вырывания электрона из любой атомной оболочки (hv > ), то наиболее вероятным будет испускание сильно связанных, т.е. глубинных атомных электронов. Увеличение порядкового номера zпоглотителя приводит к увеличению вероятности фотоэффекта, поскольку ослабляется связь электронов с атомным остатком и возрастает число электронов в атоме. С ростом энергии hvвероятность фотоэффекта понижается.
Комптоновским рассеянием называется такой процесс, при котором гамма-квант, взаимодействуя со слабо связанным электроном, передает ему часть своей энергии hvи рассеивается под углом qк первоначальному направлению, а электрон покидает атом, обладая кинетической энергией.
Увеличение энергии гамма квантов
приводит к монотонному убыванию вероятности Комптон-эффекта.Рождение электронно-позитронной пары — процесс, при котором гамма-квант превращается в пару частиц — электрон и позитрон, в результате взаимодействия с электрическим полем ядра или электрона. Процесс рождения пары частиц в поле ядра возможен при энергиях гамма-квантов превышающих 1,02 МэВ. Для возникновения такого же процесса в поле электрона энергия гамма квантов должна достичь порогового значения 2,04 МэВ.
Механизм поглощения гамма-излучения зависит от его энергии. Если энергия кванта меньше 100-200 кэВ, то наиболее вероятным механизмом поглощения является фотоэффект. Образовавшийся при фотоэффекте электрон способен вызвать ионизацию среды в которой он движется. При энергиях, больших 200 кэВ и вплоть до 100 МэВ, основным механизмом поглощения энергии гамма квантов является Комптон-эффект. Начиная с энергии гамма кванта 1,02 МэВ появляется вероятность образования электронно-позитронных пар. Энергия кванта, равная 1,02 МэВ, расходуется на образование пары, а избыток энергии кванта переходит в кинетическую энергию образующихся частиц, которые теряют эту энергию при столкновении с электронами. Наряду с процессом образования пар происходит их аннигиляция с образованием двух гамма квантов
4.4 ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ С ВЕЩЕСТВОМ
Нейтроны, имеющие нулевой заряд, не взаимодействуют с электронной оболочкой встреченных атомов, а поэтому могут проникать вглубь их. Проникающая способность нейтронов весьма велика. При этом нейтроны могут либо поглощаться ядрами, либо рассеиваться на них. При упругом рассеивании на ядрах углерода, азота, кислорода и других элементов, входящих в состав тканей, нейтроны теряют лишь 10-15% энергии, а при столкновении с почти равными с ними по массе ядрами водорода — протонами — энергия нейтрона уменьшается в среднем вдвое. Поэтому, с одной стороны, вещества, содержащие большое количество атомов водорода (вода, парафин), используют для замедления нейтронов. С другой стороны, процесс упругого соударения нейтронов с протонами используется для регистрации быстрых нейтронов. В самом деле при упругом ударе нейтрона с неподвижным протоном последнему передаётся большая часть кинетической энергии нейтрона — нейтрон практически останавливается, а протон начинает двигаться в том направлении, в котором двигался нейтрон. Движущийся протон на своём пути производит интенсивную ионизацию, которая регистрируется счётчиком или камерой Вильсона.
Испытавшие столкновение нейтроны совершают хаотическое движение с тепловыми скоростями. Такие тепловые нейтроны могут быть зарегистрированы с помощью ядерных реакций, при которых нейтрон, проникая в ядро, способствует вылету из него высокоэнергетической альфа-частицы. По количеству ионизации, производимых этими альфа-частицами, можно судить о прохождении через камеру медленных нейтронов.
Кроме упругих взаимодействий нейтронов с ядрами, возможны и неупругие взаимодействия. При таком взаимодействии нейтрон поглощается ядром. В результате этого поглощения (радиационного захвата) образуется нестабильный тяжёлый изотоп, который испытывает бета-распад, сопровождающийся гамма-излучением. Процесс радиационного захвата нейтронов используется в технике для получения искусственных радиоактивных нуклидов, например, кобальта (радиоактивный распад
сопровождается испусканием бета-частиц с максимальной энергией 1,33 МэВ).Представляет интерес реакция протекающая в атмосфере постоянно под действием нейтронов, содержащихся в космическом излучении. Возникающий при этом углерод
радиоактивен, его период полураспада составляет 5730 лет. Радиоуглерод усваивается растениями в результате фотосинтеза и участвует в круговороте веществ в природе. Установлено, что равновесная концентрация в различных местах земного шара одинакова и соответствует примерно 14 распадам в минуту на каждый грамм углерода. Когда организм умирает, процесс усвоения углерода прекращается и концентрация в организме начинает убывать по закону радиоактивного распада. Таким образом, измерив концентрацию в останках организмов, тканей и т.д. можно определить их возраст.Захватом нейтрона сопровождается также одна из важнейших реакций — реакция деления, в результате которой ядро делится на две примерно равные по массе части. При делении ядра образуются новые вторичные нейтроны: два-три на каждый акт деления, которые могут, в свою очередь, вызвать деление других ядер вещества, что в соответствующих условиях может вызвать цепную реакцию.
Реакции деления атомных ядер будут рассмотрены более подробно ниже.
В заключение заметим, что при попадании нейтронов на тело человека, так же как гамма квантов или альфа, бета-частиц, их воздействие сводится, в конечном счете, к ионизации биологической ткани. Напомним кратко свойства трех видов излучений.
Альфа излучение — проникающая способность невелика, задерживается листом бумаги, одеждой, неповрежденной кожей; оно не представляет опасности до тех пор, пока радиоактивные вещества не попадут внутрь организма с пищей или вдыхаемым воздухом. При попадании внутрь организма альфа-излучение приводит к серьезному повреждению близлежащих клеток.
Бета излучение — быстрые, движущиеся с огромной скоростью электроны, проходит в ткани организма на глубину 1-2 см, однако от него можно защититься тонким слоем металла — 1,25 см, слоем дерева или плотной одеждой.
Гамма излучение и рентгеновское излучение — электромагнитное излучение, обладает очень большой энергией и проникающей способностью, оно проходит сквозь биологические ткани человека и его можно задержать лишь свинцовыми или бетонными плитами.
Основную дозовую нагрузку на организм человека в результате Чернобыльской катастрофы на территории Гомельской и Могилевской областей определяют следующие радионуклиды и виды излучений:
цезий-137 — 90%- гамма-частиц, 10% бета-частиц,
стронций-90 — 100% альфа-частиц,
плутоний — 100% альфа-частиц,
калий-40 — (естественный радионуклид) 10% — гамма-частиц, 90% — бета-частиц.
Кроме вышеперечисленных радионуклидов в почвах и растениях гамма-излучения определяют также цезий-134, церий-144, рутений-106.
При прохождении ионизирующего излучения через вещество происходит потеря энергии излучения. Среднюю энергию частицы, теряемую на единице длины её пути в веществе называют линейной передачей энергии (ЛПЭ). Понятие ЛПЭ было введено в 1954 году. За единицу ЛПЭ принимают 1 кэВ на 1 км пути: 1 кэВ/мкм = 62 Дж/м. Все ионизирующие излучения в зависимости от значения ЛПЭ делятся на редко- и плотно ионизирующие. К редко ионизирующим излучениям принято относить все виды излучения, для которых ЛПЭ = 10 кэВ/мкм, а к плотно ионизирующим — те, для которых ЛПЭ > 10 кэВ/мкм. Для заряженных частиц ЛПЭ возрастает с уменьшением их скорости.
5. ДОЗИМЕТРИЯ
Повреждения, вызванные в живом организме излучением, будут тем больше, чем больше энергии излучения передается тканям. Количество такой переданной организму энергии называется дозой. Измеряемые физические величины связанные с радиационным эффектом называют дозиметрическими. Задачей дозиметрии является измерение некоторых физических величин для предсказания или оценки радиационного эффекта, в частности радиобиологического. Распространенными дозиметрическими величинами являются поглощенная доза, экспозиционная доза, эквивалентная доза, эффективная эквивалентная доза, ожидаемая доза и коллективная доза. Как определить эти дозы? Если человек подвергается воздействию ионизирующего излучения, то необходимо знать распределение интенсивности излучения в пространстве. Кроме того, поглощающая способность тканей различна. Поэтому для характеристики энергии ионизирующего излучения используют экспозиционную дозу.
Экспозиционная доза — мера ионизационного действия фотонного излучения, определяемая по ионизации воздуха в условиях электронного равновесия, т.е. если поглощенная энергия излучения в некотором объеме среды равна суммарной кинетической энергии ионизирующих частиц (электронов, протонов).