Смекни!
smekni.com

Радиоактивные изотопы и соединения (стр. 8 из 8)

Хотя в НРБ и ОСП даны кратко определения основных терминов и понятий, ниже я попытаюсь упрощенно систематизировать эту информацию для начинающих работать с радиоактивными веществами.

Экспозиционная доза — энергетическая характеристика γ- и рентгеновского излучения, которая оценивается по эффекту ионизации сухого атмосферного воздуха. Единица экспозиционной дозы рентген - поток γ- или рентгеновского излучения, который в 1 см3 сухого воздуха образует 2х109 пар ионов. Эта самая популярная единица измерения в дозиметрии, хотя и является устаревшей и внесистемной.

Поглощенная доза — собственно это и является характеристикой опасности излучения, так как определяется как отношение поглощенной энергии ионизирующего излучения к массе облученного вещества. Единицы поглощенной дозы — рад и грей. Рад — это внесистемная (но популярная) единица — rad (radiation absorbed dose) — равна 100 эрг/г. Грей — единица в системе СИ, равная 1 дж/кг. Значит, 1 Гр (грей) равен 100 рад.

Эквивалентная доза — произведение поглощенной дозы излучения на некий коэффициент качества излучения, учитывающий неблагоприятные биологические последствия. Единицы измерения — бэр и зиверт. Бэр - биологический эквивалент рентгена (иногда говорят рада) — доза любого вида ионизирующего излучения, производящая такое же воздействие на биологические объекты как доза γ- или рентгеновского излучения в 1 Р (рентген). В системе СИ принят зиверт — эквивалентная доза, соответствующая поглощенной доза в 1 Гр (грей) с коэффициентом качества 1.

Эффективная доза — величина, используемая для оценки меры риска возникновения отдаленных последствий облучения всего тела человека и его отдельных органов и тканей с учетом их радиочувствительности.

Вся эта "голубая муть" на дозовую тему для нормальной работы, конечно, не нужна. Тем более для работы в life science. Дозиметрические приборы (точнее, приборы радиометрического контроля) меряют или мощность экспозиционной дозы γ- или рентгеновского излучения (в миллирентгенах в час), или поток β-частиц с поверхности (количество частиц в сек. на 1 см2). Собственно поглощенная работником доза обычно измеряется специальными индивидуальными дозиметрами разных систем: ионизационными — типа ДП-22В, фотокасетными (количественная авторадиография) и даже современными термолюминисцентными. Однако, все замеры всеми типами дозиметров всегда показывали, что для работающих в life science, поглощенные дозы бесконечно малы и не могут быть достоверно измеряны существующими приборами.

Порядок работы с радиоактивными веществами определен в ОСП. Последняя редакция этого документа называется "Основные санитарные правила обеспечения радиационной безопасности" (ОСПОРБ-99), и название полностью соответствует содержанию. В ОСПОРБ-99 не только подробно изложен порядок работы с любыми радионуклидами, но и порядок их получения (передачи) от других организации, порядок списания источников и сдачи радиоактивных отходов и многое другое. Согласно классификации работ с радиоактивными веществами в этом документе в зависимости от уровня опасности, все исследования с радиоактивными изотопами в life science относятся к третьему (самому низкому) классу радиационной опасности. Эта "классность" работ определяется, во-первых, количеством радионуклида на рабочем месте, а во-вторых, "радиотоксичностью" радионуклида и характером работ по его использованию. Радиотоксичность — понятие, введенное для оценки вреда, который может нанести радионуклид человеку, и зависит от типа распада, энергии излучения, периода полураспада и способности радионуклида усваиваться организмом. Все радионуклиды разбиты на четыре группы радиотоксичности: А (самая опасная), Б, В, и Г (наименее опасная). Из радионуклидов, указанных в таблице 1, самым "вредным" является фосфор-32 — группа Б.

Опасность радионуклида при внешнем облучении определяется характером и энергией излучения. Для всех "мягких" β-излучателей (для life science радионуклидов из таблицы 1: тритий, углеров-14, фосфор-33, и сера-35) опасность минимальна. Электронный поток задерживается листом плотной бумаги, резиновыми хирургическими перчатками и т.д. Сложнее с фосфором-32. Кроме излучения высоко энергетических электронов для фосфора-32 характерно "тормозное излучение" — вторичное электромагнитное излучение, возникающее при торможении электрона в плотной среде. По своей природе такое тормозное излучение одинаково с рентгеновским и его проникающая способность очень высокая. Именно по этой причине для защиты от излучения фосфора-32 применяются дополнительны средства защиты: защитные экраны со свинцовыми стеклами и свинцовые контейнеры для препаратов. Аналогичная защита требуется и для работы с йодом-125. Гамма-излучение 125I экранировать легкой защитой из оргстекла не удается.

Существуют три защитных фактора от воздействия ионизирующего излучения на организм.

41. Расстояние. Чем дальше вы от источника излучения, тем лучше. Это не только вывод народной мудрости — "держаться подальше", но и научно обоснованная реальность, т.к. интенсивность излучения убывает пропорционально квадрату расстояния. Поэтому старайтесь не брать радиоактивные препараты руками (даже в перчатках), а пользуйтесь пинцетами, захватами и прочими дистанционными приспособлениями, если такая возможность есть.

42. Время. Чем меньше время контакта с радиоактивным веществом, тем меньше вред воздействия. Поэтому готовьте заранее все реактивы, приборы, расчеты и продумывайте свои действия, чтобы сократить время непосредственного контакта с радиоактивным веществом до минимального.

43. Защитная среда (экранирование). Собственно защита с помощью различных контейнеров, стенок, экранов, защитной спецодежды, очков и т.д. Почему-то этому фактору уделяют самое большое внимание, хотя первый и второй гораздо важнее и проще.

Несколько сложнее ситуация с внутренним облучением. Понятно, что внутреннее облучение возможно только при попадании радионуклида вовнутрь вместе с пищей, водой или при вдохе. Так как такое попадание обычно не планируется, то и оценить количество радиоактивного материала и, соответственно, дозу внутреннего облучения очень сложно. Особенно это проблематично для слабых β-излучателей трития или углерода-14. Поэтому главным способом снижения внутреннего облучения персонала, работающего с радионуклидами, является аккуратность в работе с открытыми источниками и соблюдение санитарных и гигиенических норм и правил.

Вообще, вопреки разным слухам, количество радиоактивного материала, которое используется для life science, не может нанести серьезного ущерба для здоровья человека, работающего непосредственно с препаратом, и тем более для его будущих детей. Даже если в полном безумии кто-то проглотит 1÷2 полных фасовки [γ-32P] ATP (40 МБк), то ущерб будет выражаться, как материальные потери от нецелевого использования препарата, но не от физического вреда здоровью проглотившего. За многолетнюю работу многочисленных научных сотрудников в биологических НИИ в СССР, а затем в России, не зафиксировано ни одного случая отрицательного воздействия радиоактивных препаратов на здоровье работающего сотрудника. Слишком маленькие количества радиоактивных препаратов применяют для работы по III-му классу работ с радиоактивными веществами. Однако, это не относится к работам на предприятиях, производящих радионуклиды, и к другим организациям, где работают с радионуклидами по I или II классу работ.