Внутрішнє опромінення
В середньому дві третини ефективної еквівалентної дози опромінення, яке людина одержує від природних джерел радіації, надходять від радіоактивних речовин, які потрапили в організм із їжею, водою або повітрям. Невелика частина цієї дози припадає на радіоактивні ізотопи типу вуглецю-14 і тритію, які утворюються під впливом космічної радіації. Все інше надходить від джерел земного походження. Кожна людина одержує близько 180 мікрозівертів на рік за рахунок калію-40, що засвоюється організмом разом з нерадіоактивними ізотопами калію, необхідними для життєдіяльності організму. Однак значно більшу дозу внутрішнього опромінення людина одержує від нуклідів радіоактивного ряду урану-238 і дещо меншу від радіоактивного ряду торію-232 .
Деякі з цих нуклідів, наприклад нукліди свинцю-210 і полонію-210, надходять в організм із їжею. Таких нуклідів досить багато у рибі і у молюсках, тому люди, які споживають багато риби й інших дарунків моря, можуть одержувати відносно високі дози внутрішнього опромінення.
Природні джерела радіації
Найбільш вагомим із всіх природних джерел радіації є важкий газ (у 7.5 разів важчай за повітря) – радон. У природі радон зустрічається у двох модифікаціях: у вигляді радону-222 , складник радіоактивного ряду урану- 238 , і у вигляді радону – 220 , складник радіоактивного ряду торію-232 . Основну частину дози опромінення від радону людина одержує, перебуваючи у закритих приміщеннях. Концентрація радону в закритих приміщеннях в середньому у вісім разів вища, ніж на відкритому повітрі.
Радон концентрується у повітрі приміщень лише в тих випадках, коли вони в достатній мері ізольовані від зовнішнього середовища. Причинами надходження радону в приміщення є його просочування через фундамент і підлогу з ґрунту, або вивільнення з матеріалів, які використовуються у конструкціях будинку. Тому в приміщеннях можуть виникати досить високі рівні радіації. Іноді концентрація радону в закритому приміщенні в 5000 разів вища концентрації радону на відкритому повітрі.
Найпоширеніші будівельні матеріали, такі як дерево, цегла і бетон, виділяють відносно невелику кількість радону. Основним джерелом надходження радону у житлові приміщення є граніт і вулканічні викиди – пемза. В таблиці 2 наведені питомі радіоактивності деяких будівельних матеріалів:
Таблиця 2
Будівельні матеріали | Питомі радіоактивності (Бк на 1 кг) |
Дерево | 1.1 |
Зола (вугільний шлак) | 341 |
Цемент | Менше 45 |
Цегла | 126 |
Кальцій – силікатний шлак | 2 140 |
Відходи уранових руд | 4 625 |
Граніт | 170 |
Пісок і гравій | 34 |
Природний гіпс | 29 |
Відповідно до отриманих оцінок, люди, які проживають у будинках, де використовуються матеріали на основі фосфогіпсу, можуть одержати колективну ефективну еквівалентну дозу, яка на 30% вища, ніж при використанні звичайного гіпсу. Тому радіаційний контроль будівельних матеріалів заслуговує найпильнішої уваги.
Однак головне джерело радону в закритих приміщеннях – це ґрунт. Концентрація радону на верхніх поверхах багатоповерхових будинків, як правило, нижча, ніж на першому поверсі. Швидкість проникнення радону з грунту в приміщення фактично визначається товщиною і цілісністю міжповерхових перекриттів. Емісія радону зі стін зменшується у 10 разів при облицюванні стін пластиковими матеріалами типу поліаміду або полівінілхлориду, або трьома шарами олійної фарби. Навіть при обклеюванні стін шпалерами швидкість емісії радону зменшується на 30%.
Ще одне важливе джерело надходження радону в приміщення пов’язане з водою і природним газом. Концентрація радону у звичайній воді надзвичайно мала, але вода з деяких джерел, особливо з глибоких колодязів або артезіанських свердловин, містить дуже багато радону. Однак основна небезпека радіаційного опромінення приходить зовсім не від питної води, а води в складі їжі після її кип'ятіння. При кип'ятінні води радон у значній мірі видаляється разом з парою. Велику небезпеку створює попадання пари води з високим вмістом радону в легені разом із повітрям, що найчастіше відбувається у ванній кімнаті. В ряді країн Західної Європи виявлено, що концентрація радону у ванній кімнаті в три рази вища, ніж на кухні, і приблизно в сорок разів вища, ніж у житлових кімнатах.
Глибоко під землею радон проникає також у природний газ. У результаті попередньої переробки газу й у процесі його зберігання, перед надходженням до споживача, велика частина радону зникає. Але концентрація радону в приміщенні може зрости, якщо кухонні плити, опалювальні й інші нагрівальні пристрої, у яких спалюється природний газ, не оснащені надійною витяжкою. За оцінюванням фахівців ефективна еквівалентна доза опромінення від радону і його дочірніх продуктів складає у середньому біля одного мЗв/рік, тобто біля половини всієї річної дози, одержуваної людиною в середньому від усіх природних джерел радіації.
Інші джерела радіації
Вугілля, подібно більшості інших природних матеріалів, містить незначну кількість первинних радіонуклідів. Концентрація радіонуклідів у різних вугільних шарах відрізняється у сотні разів. В основному вугілля містить менше радіонуклідів, ніж земна кора. Але при спалюванні вугілля велика частина його мінеральних компонентів спікається у шлак або золу, де в основному і концентруються радіонукліди. Використання золи як добавки до цементу і бетонів, може призвести до збільшення радіаційного опромінення.
Фосфати. Видобуток фосфатів, які використовуються для виробництва мінеральних добрив, супроводжується підвищенням радіоактивного фону. Це пов'язано з тим, що більшість відкритих фосфатних родовищ містять уран. У процесі видобутку і переробки руди виділяється радон, та й самі добрива містять радіоізотопи, що проникають із ґрунту в харчові культури.
Штучні джерела радіації
За останнє десятиліття створено кілька сотень штучних радіонуклідів, а також активно використовується енергія атома в різних цілях. Однак, на відміну від природних джерел, породжуване штучними джерелами радіоактивне випромінювання, практично в усіх випадках контролюється. Умовно, штучні джерела радіації можна поділити на групи:
· рентгенівські апарати, діагностичні пристрої на базі використання радіоізотопів, променева терапія;
· ядерні вибухи;
· атомна енергетика;
· предмети, що містять радіоактивні речовини.
Ще й сьогодні можна зустріти годинники з циферблатами, які виготовлялися із застосуванням радію або трохи менш небезпечного тритію; антистатичні щітки для видалення пилу з фотографічних плівок, дія яких основана на випромінюванні a- частинок; радіоізотопні детектори диму, принцип дії яких оснований на використанні a-випромінювання плутонію 239; кольорові телевізори, що випускають м’яке рентгенівське випромінювання й інші пристрої.
Основні джерела опромінення населення й обумовлені ними ефективні та еквівалентні дози, можна наочно подати у вигляді таблиці 3:
Таблиця 3
Джерела опромінення | Доза(мкЗв/рік) |
Природні: Космічні промені на поверхні Землі. (Рівень опромінення космічними променями росте з висотою і подвоюється кожні 500 метрів). Гамма випромінювання: - фонове - додаткове (будматеріали) Внутрішнє опромінення: - бета – випромінювачі - альфа – випромінювачі Додаткове від: добрив, спалювання вугілля Радон – 222, радон – 220 - фонове - додаткове від будматеріалів ґрунту | 0,320 3,00 1,10 2,00 1,60 0.003 0,02 2,80 4,80 1 0,90 |
Усього | 2 9,40 |
Медичні: Рентгенодіагностика Радіонуклідна діагностика | |
Усього | 1 2,30 |
Інші штучні джерела: Випробування ядерної зброї Ядерна енергетика Професійне опромінення Наслідку аварії на Чорнобильської АЕС | |
Усього | 0,53 |
3.4.3 Потік і інтенсивність іонізуючих випромінювань
Потік будь-якого радіоактивного випромінювання Ф визначають відношенням числа частинок, які падають на поверхню S, розташовану перпендикулярно до напрямку поширення випромінювання за час t .
(3.4.3.1)Позначимо число частинок в одиниці об’єму, які рухаються в напрямку до мішені, буквою n. Це число називається концентрацією частинок. За одиницю часу на мішень попадають ті частинки, відстань яких від мішені не перевищує довжини, чисельно рівної швидкості
. Оскільки одиничну площадку мішені перетинають частинки, які розміщуються у циліндрі висотою і одиничною площею поперечного перерізу S, то потік такого випромінювання буде дорівнювати:Ф =
(3.4.3.2)Потік частинок вимірюють в одиницях част./(м2·с) або част./(см2·с), причому:
(3.4.3.3)Сумарне число частинок, які падають щосекунди на мішень площею S, можна визначити за формулою N = Ф·S .
Інтенсивність випромінювання J – це енергія випромінювання, яка переноситься частинками за одиницю часу через одиничну площадку, перпендикулярну напрямку поширення випромінювання. Одиницею інтенсивності випромінювання є ват поділений на квадратний метр (Вт/м2).
(3.4.3.4)Інтенсивність випромінювання вимірюється в Дж/м2с або в Вт/м2, або в МеВ/(см2·с). Зв’язок між одиницями інтенсивності Вт/м2 і МеВ/см2с має вигляд:
(3.4.3.5)Для моноенергетичного пучка частинок з кінетичними енергіями Е потік і інтенсивність випромінювання пов’язані досить простим співвідношенням:
J = Ф·Е.. (3.4.3.6)
Якщо пучок випромінювання складається з немоноенергетичних частинок, то за кінетичну енергію в останній формулі приймають середню кінетичну енергію цих частинок :
J= Ф
. (3.4.3.7)