Именно размерными эффектами определяются многие уникальные свойства наноматериалов. Для различных характеристик (механических, электрических и др.) критический размер может быть различным, как и характер изменений (равномерный или неравномерный). Например, электропроводность начинает зависеть от размера частицы при уменьшении кристалла вещества до размеров 10-20 нм и менее.
Доля атомов, находящихся в поверхностном слое (толщиной около 1 нм), естественно, растет с уменьшением размера частиц вещества. Поверхностные атомы обладают свойствами, отличающимися от "внутренних" атомов, поскольку они связаны с соседями иначе, чем внутри вещества. В результате на поверхности велика вероятность протекания процессов изменения структурного расположения атомов и их свойств. В результате поверхность (или межфазная граница) рассматривается как некое новое состояние вещества.
Учитывая абсолютные размеры наночастиц, с определенными допущениями можно считать, что наночастица представляет собой вещество, близкое по свойствам к межфазной границе. Например, нанотрубки имеют высокую удельную плотность поверхности, поскольку вся масса сосредоточена в поверхностном слое. Кроме того, расстояние между графитовыми слоями в многослойных системах (0,335 нм) оказывается достаточным, чтобы некоторые вещества в атомарном виде (например, молекулы водорода) могли заполнять их межстенное пространство, которое образует уникальную емкость для хранения газообразных, жидких и даже твердых веществ. Нанотрубки обладают уникальными механическими свойствами. Модуль упругости вдоль продольной оси трубки достигает 70·105 МПа (у легированной стали он равен 2,1·105 МПа, а у наиболее упругого металла иттрия - 5,2·105 МПа). Кроме того, однослойные нанотрубки имеют высокую (до 16%) эластичность, то есть способность оказывать влияющей на них силе механическое сопротивление и принимать исходное состояние после ее снятия. Наиболее типична для многослойных нанотрубок структура "русская матрешка" - в них трубки меньшего размера вложены в более крупные. Эксперименты сейчас достигли такого технического уровня, что с помощью специального манипулятора можно вытянуть внутренние слои, оставив внешние слои фиксированными (Рис.6).
Рис. 6. Исследование свойств нанотрубок: 1 – опытная нанотрубка; 2 – нанотрубка после удаления внешних слоев на вершине; 3 – положение после снятия нагрузки нанотрубка с внутренними слоями, вытянутыми при помощи специального наноманипулятора; 4 – релаксация (возврат) внутренних слоев нанотрубки в исходное
Нанотрубка удлиняется подобно удочке, приобретая коническую со ступеньками форму. Трубку укрепляют с одного конца и снимают с нее несколько слоев вблизи вершины, чтобы открыть кончик, за который можно "ухватиться". Затем к заостренному концу подводят манипулятор, двигая которым, можно удлинять или укорачивать трубку, вытягивая внутренние слои из внешней оболочки. Если удалить манипулятор, вытянутая часть возвращается под действием сил притяжения Ван-дер-Ваальса, как пружина. Это указывает на уникальные свойства нанотрубок.
Таким образом, многослойная углеродная нанотрубка является великолепным цилиндрическим подшипником. Если внутреннюю часть оставить неподвижной, а внешнюю заставить вращаться, можно получить почти идеальный подшипник скольжения, в котором поверхность скольжения атомно-гладкая, а силы взаимодействия между поверхностями (силы Ван-дер-Ваальса), т.е. силы трения очень слабые.
С другой стороны, при высоких давлениях фуллерен С60 становится твердым, как алмаз. Его молекулы образуют кристаллическую структуру, состоящую из идеально гладких шаров, свободно вращающихся в гранецентрированной кубической решетке. Благодаря этому свойству С60 можно использовать в качестве твердой смазки.
Другое уникальное свойство наноструктур - квантовые эффекты и необычные электронные свойства наночастиц, прежде всего углеродных нанотрубок.
С позиций квантовой механики электрон может быть представлен волной, описываемой соответствующей волновой функцией. Распространение этой волны в наноразмерных твердотельных структурах контролируется эффектами, связанными с квантовым ограничением, интерференцией и возможностью туннелирования через потенциальные барьеры.
Волна, соответствующая свободному электрону в твердом теле, может беспрепятственно распространяться в любом направлении. Ситуация кардинально меняется, когда электрон попадает в твердотельную структуру, размер которой, по крайней мере в одном направлении, ограничен и сравним с длиной электронной волны. В данных направлениях возможно распространение только волн с длиной, кратной геометрическим размерам структуры. Это значит, что соответствующие им электроны могут иметь только определенные фиксированные значения энергии. Это явление получило название квантового ограничения.
Так, с одной стороны, есть трубки с хорошей электронной проводимостью, а с другой стороны, большинство трубок - это полупроводники с шириной запрещенной зоны от 0,1 до 2 эВ. Управляя их зонной структурой, можно, например, значительно увеличить плотность записи запоминающих устройств.
Итак, наночастицы обладают комплексом самых уникальных свойств. Многие из них еще изучены не полностью, а другие, возможно, и не открыты. Эти свойства открывают перед человечеством возможности принципиального изменения современного состояния науки и техники.
Сегодня разработано много методов получения углеродных наноструктур с разными размерами и свойствами, но суть всех методов одна: нанотрубки и фуллерены образуются в результате химических превращений углеродсодержащих материалов в условиях повышенных температур. Рассмотрим несколько наиболее популярных методов.
Электродуговое распыление графит.
Это самый распространенный метод, разработанный. Именно так японский ученый С. Иджима впервые получил нанотрубки в 1991 году. Суть метода такова: в камере, заполненной инертным газом, между графитовыми электродами горит электрический разряд, ионизирующий атомы газа. Катод и стенки камеры охлаждаются при помощи воды или жидкого азота.
Рис. 7. Схема установки дляполучения нанотрубок и фуллеренов
При токе дуги порядка 100 А, давлении газа в несколько раз меньше атмосферного и напряжении на электродах 25-35 В температура образующейся между электродами плазмы достигает 4000 К. При такой температуре поверхность графитового анода интенсивно испаряется. В результате резкого перепада температур атомы углерода уносятся из горячей в более холодную область плазмы[1] и конденсируются в осадок на стенках камеры и поверхности катода.
Рассматривая этот осадок в электронный микроскоп, можно увидеть наряду с сажей и графитом новые структуры - фуллерены и нанотрубки. При этом часть осадка, содержащая графит, сажу и фуллерены, осаждается на холодные стенки камеры, а часть, содержащая графит и нанотрубки, - на катод.
Лазерное испарение графита.
В этом методе испаряемый лазером графит конденсируется на охлаждаемом коллекторе. Графитовая мишень расположена в длинной кварцевой трубке внутри цилиндрической печки с температурой 1000°С. Вдоль трубки с невысокой скоростью прокачивается буферный газ (гелий или аргон). Мишень облучают лазером с энергией 140 мДж, длительностью импульса 8 нс и диаметром сфокусированного пучка около 1,6 мм. Продукты термического распыления графита уносятся из горячей области и осаждаются на поверхности охлаждаемого коллектора. В получаемом осадке помимо наночастиц графита обнаруживаются также фуллерены и нанотрубки.
Рис. 8. Схема установки для получения фуллеренов и нанотрубок лазерным испарением графита
Достоинство данного метода - возможность получения нанотрубок с заданными структурными параметрами. Недостаток - невысокая производительность и трудность масштабирования.
Рис. 9. Схема установки для получения фуллеренов и нанотрубок химическим осаждением из пара
Сегодня получение нанотрубок в количествах, достаточных для изучения, стало обычным делом. Проблема теперь состоит в снижении их себестоимости и получении в промышленных масштабах, поскольку рассмотренные выше методы не позволяют достичь этого. С этой точки зрения интересен третий метод, разработанный российскими учеными под руководством М.М. Томишко.
Метод химического осаждения из пара.
Этот наиболее практичный и массовый способ получения углеродных нанотрубок основан на термохимическом осаждении углеродсодержащего газа на поверхности горячего металлического катализатора.
Углеродсодержащая газовая смесь (обычно смесь ацетилена или метана с азотом) пропускается сквозь кварцевую трубку, помещенную в печь при температуре около 700-1000°С. В трубке находится керамический тигель[2] с катализатором - металлическим порошком. Разложение углеводорода, происходящее в результате химической реакции атомов газа с атомами металла, приводит к образованию на поверхности катализатора фуллеренов и нанотрубок с внутренним диаметром до 10 нм и длиной до нескольких десятков микрон. Как видно из описания, при всех методах получения фуллеренов и углеродных нанотрубок конечный материал содержит часть шлака - сажу, частицы аморфного графита, а в случае использования катализаторов - частицы металлов. Для повышения чистоты полученного продукта используют различные методы очистки - как механические (фильтрация, обработка ультразвуком), так и химические (промывание в химически активных веществах, нагревание).