Смекни!
smekni.com

Разработка механического привода электродвигателя редуктора (стр. 1 из 3)

Московский государственный университет

путей сообщения (МИИТ)

Курсовой проект по дисциплине

Детали машин и основы конструирования

Разработка механического привода электродвигателя редуктора

Студент гр. ТДМ 311

Хряков К.С

2009 г.


Введение

Механический привод разрабатывается в соответствии со схемой, приведенной на рисунке 1.

1 – электродвигатель;

2 – муфта;

3 – редуктор;

4 – муфта;

5 – исполнительный механизм

Рисунок 1 – Схема привода

Механический привод работает по следующей схеме: вращающий момент с электродвигателя 1 через муфту 2 передаётся на быстроходный вал редуктора 3. Редуктор понижает число оборотов и увеличивает вращающий момент, который через муфту 4 передается на исполнительный механизм 5. Редуктор состоит из двух ступеней. Первая ступень выполнена в виде шевронной цилиндрической передачи, а вторая – в виде прямозубой.

Достоинством данной схемы привода являются малые обороты и большой момент на выходном валу редуктора. Привод может использоваться на электромеханических машинах и конвейерах.

Исходные данные для расчёта:

1. Синхронная частота вращения электродвигателя nсх= 3000 мин-1;

2. Частота вращения на входе nu= 150 мин-1;

3. Вращающий момент на входе Tu= 400 Нм;

4. Срок службы привода Lг= 6000 ч;

Переменный характер нагружения привода задан гистограммой, изображённой на рисунке 2.

Рисунок 2 –Гистограмма нагружения привода.

Относительная нагрузка: k1=1 ; k2=0,3 ; k3=0,1 .

Относительное время работы: l1=0,25 ; l2=0,25 ; l3=0,5 .

Характер нагрузки: толчки.


1. Кинематический и силовой расчёты привода

1.1 Определяем КПД привода

ηпр = ηМ1 · ηред · ηМ2,

где ηпр – КПД привода;

ηМ1 – КПД упругой муфты;

ηред – КПД редуктора;

ηМ2 – КПД соединительной муфты.

Принимаем: ηМ1 = 0,95;

ηМ2 = 0,98;[1]

Определяем КПД редуктора:

где η1ст, η2ст – КПД первой и второй ступени редуктора.

η1ст = η2ст = 0,98 [1]

ηn– КПД пары подшипников; ηn = 0,99 [1]

z = 3 – число пар подшипников.

ηред = 0,993 · 0,98 · 0,98 = 0,93.

ηпр = 0,95 · 0,98 · 0,93 = 0,87.

1.2 Находим требуемую мощность электродвигателя.

1.3 Выбор электродвигателя.

nсх = 3000 мин-1

Выбираем электродвигатель 4А112М2 ГОСТ 19523-81 [2], мощность которого Рдв = 7,5 кВт

Величина скольжения

S = 2,5%

nдв =2925 мин-1 – частота вращения вала двигателя.

1.4 Вычисляем требуемое передаточное отношение редуктора

1.5 Производим разбивку передаточного отношения по ступеням

Согласно рекомендации книги [1], принимаем

1.6 Вычисляем частоты вращения валов

· Быстроходный вал:

· Промежуточный вал:

· Тихоходный вал:

1.7 Вычисляем вращающие моменты на валах

· Быстроходный вал:

· Промежуточный вал:

· Тихоходный вал:


2. Расчёт зубчатых передач

2.1 Расчёт зубчатой передачи тихоходной ступени редуктора

2.1.1 Выбор материалов

Принимаем для изготовления среднеуглеродистую конструкционную сталь с термообработкой нормализация и улучшение, что позволяет производить чистовое нарезание зубьев с высокой точностью после термообработки.

Такие колеса хорошо прирабатываются и не подвержены хрупкому разрушению при динамических нагрузках. Такой тип колес наиболее приемлем в условиях индивидуального и мелкосерийного производства.

Шестерня – сталь 45, термообработка – улучшение;

(192…240) НВ,НВср1=215 ;

Н1≥Н2 + (10…15)НВ;[3]

Колесо – сталь 45, термообработка – нормализация;

(170…217)НВ,НВср2=195.

2.2 Определяем базовое число циклов перемены напряжений

а) по контактным напряжениям:

NН0 = 30 · НВ2,4;

для шестерни N01 =

;

для колеса N02 =

;

б) по напряжениям изгиба:

NF0 = 4 · 106.

2.3 Определяем фактическое число циклов перемены напряжений

а) по контактным напряжениям:

б) по напряжениям изгиба:

где m – показатель степени кривой усталости. При твёрдости меньше 350НВ m = 6.

Тогда,

;

2.4 Вычисляем коэффициент долговечности

а) по контактным напряжениям.

;

Для шестерни:

;

Так как NНЕ1> NН01, то принимаем KHL1=1;

Для колеса:

;

Так как NНЕ2> NН02, то принимаем KHL2=1.

б) по напряжениям изгиба.

Так как NFE1 > 4∙106 и NFE2 > 4∙106, то принимаем KFL1=1 и KFL2=1.

2.5 Вычисляем базовое значение предела выносливости

а) для контактных напряжений

Для термообработки улучшения

σ0нlimb=2·HB+70 [2]

Для шестерни:

σ0нlimb1 = 2·215 + 70 = 500 МПа.

Для колеса:

σ0нlimb2 = 2·195 + 70 = 460 МПа.

б) для напряжений изгиба

Для термообработки улучшение и нормализация:

σ0Flimb= 1,8 НВ;[2]

σ0Flimb1= 1,8 · 215 = 387 МПа;

σ0Flimb2= 1,8 · 195 = 351 МПа.

2.6 Определяем допускаемые контактные напряжения:

;

- коэффициент запаса.

При термообработке нормализация и улучшение принимаем

[2]

МПа;

МПа;

- расчет ведем по наименьшему значению.

2.7 Определяем допускаемые напряжения изгиба

где

- коэффициент, зависящий от вероятности безотказной работы. Принимаем
= 1,75 [2]

- коэффициент, зависящий от способа изготовления заготовки, Для проката
= 1,15[2]

МПа;

МПа.

2.8 Проектный расчет цилиндрической прямозубой передачи.

2.8.1 Определяем межосевое расстояние из условия обеспечения контактной прочности зуба

;

Предварительно принимаем КНβ = 1,2[2]

Ψba-ширина зубчатого венца;

Принимаем для прямозубой передачи Ψba= 0,25 и Ка = 49,5 [2]

мм;

Принимаем ближайшее стандартное значение аW ГОСТ=250 мм [2]

2.8.2 Определяем модуль зацепления:

mn=(0,01…0,02)·аW=(0,01…0,02)·250=2,5…5 мм

принимаем mn=2,5 мм [2]

2.8.3 Определяем основные параметры зубчатых колес:

а) суммарное число зубьев:

Z=

Z1= Z/(u+1)=200/(3,89+1)=40;

Z2= Z – Z1 =200 – 40 = 160;