Московский государственный университет
путей сообщения (МИИТ)
Курсовой проект по дисциплине
Детали машин и основы конструирования
Разработка механического привода электродвигателя редуктора
Студент гр. ТДМ 311
Хряков К.С
2009 г.
Введение
Механический привод разрабатывается в соответствии со схемой, приведенной на рисунке 1.
1 – электродвигатель;
2 – муфта;
3 – редуктор;
4 – муфта;
5 – исполнительный механизм
Рисунок 1 – Схема привода
Механический привод работает по следующей схеме: вращающий момент с электродвигателя 1 через муфту 2 передаётся на быстроходный вал редуктора 3. Редуктор понижает число оборотов и увеличивает вращающий момент, который через муфту 4 передается на исполнительный механизм 5. Редуктор состоит из двух ступеней. Первая ступень выполнена в виде шевронной цилиндрической передачи, а вторая – в виде прямозубой.
Достоинством данной схемы привода являются малые обороты и большой момент на выходном валу редуктора. Привод может использоваться на электромеханических машинах и конвейерах.
Исходные данные для расчёта:
1. Синхронная частота вращения электродвигателя nсх= 3000 мин-1;
2. Частота вращения на входе nu= 150 мин-1;
3. Вращающий момент на входе Tu= 400 Нм;
4. Срок службы привода Lг= 6000 ч;
Переменный характер нагружения привода задан гистограммой, изображённой на рисунке 2.
Рисунок 2 –Гистограмма нагружения привода.
Относительная нагрузка: k1=1 ; k2=0,3 ; k3=0,1 .
Относительное время работы: l1=0,25 ; l2=0,25 ; l3=0,5 .
Характер нагрузки: толчки.
1. Кинематический и силовой расчёты привода
1.1 Определяем КПД привода
ηпр = ηМ1 · ηред · ηМ2,
где ηпр – КПД привода;
ηМ1 – КПД упругой муфты;
ηред – КПД редуктора;
ηМ2 – КПД соединительной муфты.
Принимаем: ηМ1 = 0,95;
ηМ2 = 0,98;[1]
Определяем КПД редуктора:
где η1ст, η2ст – КПД первой и второй ступени редуктора.
η1ст = η2ст = 0,98 [1]
ηn– КПД пары подшипников; ηn = 0,99 [1]
z = 3 – число пар подшипников.
ηред = 0,993 · 0,98 · 0,98 = 0,93.
ηпр = 0,95 · 0,98 · 0,93 = 0,87.
1.2 Находим требуемую мощность электродвигателя.
1.3 Выбор электродвигателя.
nсх = 3000 мин-1
Выбираем электродвигатель 4А112М2 ГОСТ 19523-81 [2], мощность которого Рдв = 7,5 кВт
Величина скольжения
S = 2,5%
nдв =2925 мин-1 – частота вращения вала двигателя.
1.4 Вычисляем требуемое передаточное отношение редуктора
1.5 Производим разбивку передаточного отношения по ступеням
Согласно рекомендации книги [1], принимаем
1.6 Вычисляем частоты вращения валов
· Быстроходный вал:
· Промежуточный вал:
· Тихоходный вал:
1.7 Вычисляем вращающие моменты на валах
· Быстроходный вал:
· Промежуточный вал:
· Тихоходный вал:
2. Расчёт зубчатых передач
2.1 Расчёт зубчатой передачи тихоходной ступени редуктора
2.1.1 Выбор материалов
Принимаем для изготовления среднеуглеродистую конструкционную сталь с термообработкой нормализация и улучшение, что позволяет производить чистовое нарезание зубьев с высокой точностью после термообработки.
Такие колеса хорошо прирабатываются и не подвержены хрупкому разрушению при динамических нагрузках. Такой тип колес наиболее приемлем в условиях индивидуального и мелкосерийного производства.
Шестерня – сталь 45, термообработка – улучшение;
(192…240) НВ,НВср=Н1=215 ;
Н1≥Н2 + (10…15)НВ;[3]
Колесо – сталь 45, термообработка – нормализация;
(170…217)НВ,НВср=Н2=195.
2.2 Определяем базовое число циклов перемены напряжений
а) по контактным напряжениям:
NН0 = 30 · НВ2,4;
для шестерни N01 =
;для колеса N02 =
;б) по напряжениям изгиба:
NF0 = 4 · 106.
2.3 Определяем фактическое число циклов перемены напряжений
а) по контактным напряжениям:
б) по напряжениям изгиба:
где m – показатель степени кривой усталости. При твёрдости меньше 350НВ m = 6.
Тогда,
;2.4 Вычисляем коэффициент долговечности
а) по контактным напряжениям.
;Для шестерни:
;Так как NНЕ1> NН01, то принимаем KHL1=1;
Для колеса:
;Так как NНЕ2> NН02, то принимаем KHL2=1.
б) по напряжениям изгиба.
Так как NFE1 > 4∙106 и NFE2 > 4∙106, то принимаем KFL1=1 и KFL2=1.
2.5 Вычисляем базовое значение предела выносливости
а) для контактных напряжений
Для термообработки улучшения
σ0нlimb=2·HB+70 [2]
Для шестерни:
σ0нlimb1 = 2·215 + 70 = 500 МПа.
Для колеса:
σ0нlimb2 = 2·195 + 70 = 460 МПа.
б) для напряжений изгиба
Для термообработки улучшение и нормализация:
σ0Flimb= 1,8 НВ;[2]
σ0Flimb1= 1,8 · 215 = 387 МПа;
σ0Flimb2= 1,8 · 195 = 351 МПа.
2.6 Определяем допускаемые контактные напряжения:
; - коэффициент запаса.При термообработке нормализация и улучшение принимаем
[2] МПа; МПа; - расчет ведем по наименьшему значению.2.7 Определяем допускаемые напряжения изгиба
где
- коэффициент, зависящий от вероятности безотказной работы. Принимаем = 1,75 [2] - коэффициент, зависящий от способа изготовления заготовки, Для проката = 1,15[2] МПа; МПа.2.8 Проектный расчет цилиндрической прямозубой передачи.
2.8.1 Определяем межосевое расстояние из условия обеспечения контактной прочности зуба
;Предварительно принимаем КНβ = 1,2[2]
Ψba-ширина зубчатого венца;
Принимаем для прямозубой передачи Ψba= 0,25 и Ка = 49,5 [2]
мм;Принимаем ближайшее стандартное значение аW ГОСТ=250 мм [2]
2.8.2 Определяем модуль зацепления:
mn=(0,01…0,02)·аW=(0,01…0,02)·250=2,5…5 мм
принимаем mn=2,5 мм [2]
2.8.3 Определяем основные параметры зубчатых колес:
а) суммарное число зубьев:
Z∑=
Z1= Z∑/(u+1)=200/(3,89+1)=40;
Z2= Z∑ – Z1 =200 – 40 = 160;