Смекни!
smekni.com

Расчет механических характеристик асинхронных двигателей с короткозамкнутым ротором (стр. 2 из 4)


5) Приведенное активное сопротивление ротора.

, (1.5)

- приведенное значение номинального тока ротора из выражения (3).

- скорость вращения идеального холостого хода.

-число пар полюсов электродвигателя, отсюда

-частота питающего напряжения=50Гц

6) Полное сопротивление короткого замыкания.

,

- фазное напряжение асинхронного двигателя. (1.6)

7) Коэффициент мощности при пуске асинхронного двигателя.

, (1.7)

- кратность пускового момента двигателя;

-номинальное значение КПД двигателя (по усл);

- отношение потерь в меди статора к суммарным потерям в номинальном режиме.

0,72

8) Коэффициент первичного рассеяния

.
1,069 (1.8)

9) Активное сопротивление обмотки статора


(1.9)

- из пункта 5; Zк- из пункта 6; cosφ из пункта 7;
- из пункта 8.
1,943 (Ом)

10) Индуктивное сопротивление обмотки статора двигателя, определяемое по номинальному режиму.

(1.10)

0,726 (Ом)

11) Индуктивное сопротивление двигателя, определяемое по пусковому режиму.

(1.11)

отсюда

12) Приведенное индуктивное сопротивление обмотки ротора

(1.12)

2. Расчет механической характеристики асинхронного двигателя в двигательном режиме

Особенностью работы АД в двигательном режиме является незначительное изменение скольжения двигателя на рабочей части его механической характеристики (s<0,8sк). Это обстоятельство позволяет считать параметры АД неизменными и, как следствие, производить инженерные расчеты механической характеристики по упрощенным формулам. При этом, активным сопротивлением обмотки статора пренебрегают.

1) Критическое скольжение двигателя

, (2.1)

0,11*6,839797 =0,752;

Задаемся текущими значениями скольжения в пределах

Зададим для скольжения произвольный шаг, например: 0,037.

2) Текущее значение частоты вращения определяют по формуле:

(2.2)

результат заносим в таблицу 1

Вычисления n при других s производим с помощью формулы в программе Excel.

Остальные результаты вычисления также заносим в таблицу 1

3) Момент асинхронного двигателя по формуле М.Клосса

,
-текущее значение скольжения асинхронного двигателя. (2.3)

результат заносим в таблицу 1

Остальные результаты вычисления для другого S также заносим в таблицу 1

4) Критическое значение частоты вращения определяем по формуле:

(2.4)

Таблица 1.

Примечание:

Характерными точками механической характеристики вне рабочей части ее являются точки с координатами

,
,
, то есть точки с координатами
,
,
.

3. Расчет механической характеристики асинхронного двигателя в режиме динамического торможения

3.1 Принцип работы асинхронного двигателя в режиме динамического торможения.Схемы динамического торможения

Термин «динамическое торможение» определяет режим работы асинхронного двигателя, при котором в обмотку статора подается постоянный ток, а ротор вращается либо за счет энергии, поступающей со стороны вала от постороннего источника потенциальной энергии, либо за счет запаса кинетической энергии. Тормозной момент образуется в результате взаимодействия неподвижного потока статора с током, вызванным этим потоком во вращающемся роторе.

Существующие схемы динамического торможения приведены в табл.

Они могут быть разделены на две группы:

1) несимметричные, в которых токи, протекающие по обмоткам статора, не равны по величине или не одинаковы по направлению (схемы I-V и VIII табл.

);

2) симметричные, в которых токи, протекающие по обмоткам, равны по величине и одинаковы по направлению (схемы VI и VII табл.

По принципу действия симметричные и несимметричные схемы различаются тем, что в несимметричных схемах тормозное поле создается, в основном, первой гармоникой суммарной МДС.

В симметричных схемах основным тормозным полем является суммарное поле третьих гармоник. В табл.

наряду с основными схемами подключения постоянного тока приведены значения сумм первых и третьих гармоник МДС.

3.2 Основные соотношения для расчета механических характеристик динамического торможения