Смекни!
smekni.com

Расчет принципиальной тепловой схемы паротурбинной установки типа Т-100-130 (стр. 1 из 9)

Аннотация

Рис. 20, табл. 35,стр. 146, плакатов 5, библиогр. 11.

В выпускной квалификационной работе проведён поверочный расчёттепловой схемы электростанции на базе теплофикационной турбины.

Т – 100 – 130, работающей на расчётном режиме при наружной температуре воздуха

, а также при температуре
и на номинальном режиме при
. Расчёт на номинальном режиме выполнен по двум методам: при принятом значении DО иNЭ; расчёт на двух других режимах выполнен по NЭ.

В результате расчёта определены:

-расход пара в отборах турбины;

- расход греющего пара в сетевые подогреватели, в регенеративные подогреватели высокого и низкого давления, а также в деаэратор 6 ата;

-расход конденсата в охладителях эжекторов, уплотнений, смесителях;

-электрическая мощность турбоагрегата (расчёт по принятому DО);

-расход пара на турбоустановку (расчёт по принятой NЭ);

-энергетические показатели турбоустановки и ТЭЦ в целом:

1)тепловая нагрузка парогенераторной установки;

2) коэффициент полезного действия ТЭЦ по производству электроэнергии;

3) коэффициент полезногодействияТЭЦ по производству и отпуску теплотына отопление;

4) удельный расход условного топлива на производство электроэнергии;

5) удельныйрасходусловного топлива на производство и отпуск тепловой энергии.

Проведён поверочный расчёт конденсационной установки КГ2-6200-2.


Задание

Рис. 1 – Принципиальная тепловая схема ТЭЦ с турбоустановкой Т-100-130


Введение

Современные паровые и газовые турбины являются основным двигателем тепловых и атомных электростанций, значение которых для энергетики определяется все возрастающими потребностями страны в электроэнергии. Паровые турбины позволяют осуществлять совместную выработку электрической энергии и теплоты, что повышает степень полезного использования теплоты органического и ядерного топлива. Газотурбинные и парогазовые установки обеспечивают высокую маневренность электростанций для покрытия пиковой части суточного графика электрической нагрузки в энергосистеме и высокий КПД (ПГУ).

Таким образом, паровая турбина является основным типом двигателя на современной тепловой электростанции, в том числе на атомной. Паровая турбина получила также широкое распространение в качестве двигателя для кораблей военного игражданского флота. Паровые турбины используются, кроме того, для привода различных машин — насосов и др.

Паровая турбина, обладая большой быстроходностью, отличается сравнительно малымиразмерами и массой и может быть построена на очень большую мощность (миллион киловатт и более), вместе с тем паровая турбина достигает высокой экономичности и имеет высокийК.П.Д.

Современные паротурбинные ТЭЦ различают по следующим признакам:

1)поназначению(видампокрываемыхнагрузок) — районные (коммунальные, промышленно-коммунальные), снабжающие теплом и электроэнергией потребителейвсегорайона,ипромышленные(заводские);

2)по начальным параметрампарапередтурбиной — низкого(до 4 МПа), среднего(4—6 МПа), высокого(9—13 МПа)и сверхкритического (24 МПа) давления.

Основными типами турбин на паротурбинных ТЭЦ являются:

· теплофикационные(тип Т), выполняемыесконденсатором ирегулируемыми отборами пара дли покрытия жилищно-коммунальныхнагрузок;

· промышленно-теплофикационные(тип ПТ), выполняемые с конденсатороми регулируемыми отборами пара для покрытия промышленных и жилищно-коммунальных нагрузок;

· противодавленческие(тип Р), не имеющие конденсатора;весьотработавшийпарпослетурбинынаправляетсяпотребителямтепла.

Турбины типа Т и ПТ являются универсальными, так как за счет перепуска части или всего количества пара в конденсатор могут вырабатывать электрическую энергию независимо от тепловой нагрузки отборов. Турбины типа Р вырабатывают электроэнергию только комбинированным методом, поэтому они используются для покрытия постоянных тепловых нагрузок, как правило, технологических нагрузок промышленных предприятий.

Для организации рационального энергоснабжения страны особенно большое значение имеет теплофикация, являющаяся наиболее совершенным технологическим способом производства электрической и тепловой энергии и одним из основных путей снижения расхода топлива на выработку указанных видов энергии. В комбинированной выработке заключается основное отличие теплофикации от так называемого раздельного метода энергоснабжения, при котором электрическая энергия вырабатывается на конденсационных тепловых электростанциях (КЭС), а тепловая – в котельных.

Ориентация российской энергетики на комбинированное производство электрической энергии и теплоты на крупных ТЭС была предусмотрена еще в государственном плане электрификации России – плане ГОЭЛРО. Эта идея, полностью оправдавшая себя опытом развития советской теплофикации, широко реализуется в городах и промышленных районах нашей страны.

Отечественная теплофикация базируется на районных ТЭЦ общего пользования и на промышленных ТЭЦ в составе предприятий, от которых теплота отпускается как промышленным предприятиям, так и расположенным поблизости городам и населенным пунктам. Для удовлетворения отопительно-вентиляционной и бытовой нагрузок жилых и общественных зданий, а также промышленных предприятий используется главным образом горячая вода. Применение горячей воды в качестве теплоносителя позволяет использовать для теплоснабжения теплоту отработавшего пара низкого давления, что повышает эффективность теплофикации благодаря увеличению удельной выработки электрической энергии на базе теплового потребления.


1. Описание принципиальной тепловой схемы теплоцентрали на базетурбоустановки типа Т-100-130

Принципиальная тепловая схема турбоустановки – это структурная схема оборудования пароводяного тракта, характеризующая процессы преобразования и использования теплоты. Принципиальные схемы турбоустановок включают структурную схему турбины, схемы конденсационного устройства (в части тракта рабочего тела), регенеративного подогрева воды, включения теплофикационной установки и некоторые другие.

Трубопроводы на принципиальной схеме указывают одной линией независимо от числа параллельных потоков; параллельно включённое однотипное оборудование также изображают только один раз; при этом полностью отражают последовательно включённые элементы. Арматуру, входящую в состав трубопроводов или установленную на самих агрегатах, на таких схемах не указывают, за исключением важнейшей.

Принципиальная тепловая схема станции с турбиной Т-100-130 приведена в приложении А. Турбина имеет семь отборов, из которых два последних – теплофикационные. Система регенеративного подогрева состоит из трёх ПВД, деаэратора (присоединенного к третьему отбору турбины по предвключённой схеме) и четырёх ПНД. Кроме того, как и обычно, в системе имеются подогреватели, работающие на паре уплотнений ПУ1 и ПУ2 и паре ПЭ. Все ПВД имеют встроенные ОП и ОД. Подогреватель низкого давления П3 имеет вынесенный ОД.

Подогрев сетевой воды проводится в ПСГ1 и НСГ2 . В зимнее время для подогрева воды можно использовать также встроенный в конденсатор выделенный пучок. При такой схеме подача циркуляционной воды в конденсатор прекращается и давление в нём несколько возрастает. Однако теплота отработавшего пара при этом полностью используется. В холодное время года, когда количество теплоты, отдаваемой паром теплофикационных отборов при максимальных расходах 2 последних отборов недостаточно, включается пиковый водогрейный котёл. В летний период сетевая вода подогревается лишь паром второго теплофикационного отбора.

В энергоблок Т-100/110-130 входит четыре подогревателя низкого давления: ПНД-1, ПНД-2, ПНД-3 и ПНД-4. Также в схему входят сальниковый подогреватель и вакуумный охладитель уплотнений.

Конденсат турбины Т-100/110-130 из конденсатора проходит последовательно через охладители эжекторов, ПС-50 (ПС-100), охладитель пара отсасываемого из концевых уплотнений турбины, ПНД № 1,2,3,4 и поступает в деаэратор 6 ата.

Пар со штоков уплотнений в количестве Dшт = 0,003D0 идет в деаэратор 0,6 МПа. Из крайних камер уплотнений сухой насыщенный пар отсасывается в (СХ), конденсат которого направляется в бак нижних точек (БНТ). Из СХ конденсат идет в атмосферный деаэратор и насосом вместе с добавочной водой направляется в конденсатор. Пар со средних камер уплотнений направляется подогреватель сальниковый (ПС). Конденсат из ПС и ПЭ направляется в конденсатор.

Для нормальной работы основных эжекторов ПС-50 и БО-90 предусмотрена рециркуляция конденсата.

Система регенерации высокого давления предназначена для регенеративного подогрева питательной воды за счёт охлаждения и конденсации пара из отборов турбины и тем самым повышения экономичности станции в целом.

Подогреватели высокого давления по принципу работы относятся к поверхностным. Питательная вода прокачивается по трубной системе, а греющий пар омывает трубки (спирали) и конденсируется на их поверхности. Температура плёнки конденсата на трубках независимо от состояния пара (перегретый или насыщенный) приблизительно равна температуре насыщения пара при соответствующем давлении в паровом пространстве подогревателя. При передаче тепла от пара к воде в поверхностных подогревателях температура подогреваемой воды всегда ниже температуры насыщения пара вследствие термического сопротивления стенки трубки и загрязнений на внутренней и наружной её поверхности. Величина недогрева, т.е. разность температуры насыщения греющего пара и температуры воды на выходе из подогревателя обычно 2-6 0С. Недогрев воды в подогревателях определяет эффективность их работы.