На основании полученных давлений в отборах и полученных энтальпий пара определим значения энтропий, температуры и степени сухости пара в характерных точках процесса в ЦВД.
sI=f(pI,hI)= 5,945 кДж/(кг.K)
sII=f(pII,hII)= 5,967 кДж/(кг.K)
sIII(pIII,hIII)= 5,992 кДж/(кг.K)
tI=ts=f(pI)= 224,1 °С
tII=ts=f (pII)= 207,4 °С
tIII=ts=f (pIII)= 190,6 °С
xI=f(tI,hI)= 0,916
xII=f(tII,hII)= 0,897
xIII=f(tIII,hIII)= 0,880
Аналогично выполняется построение процесса расширения пара в других цилиндрах главной турбины и турбины привода питательного насоса.
Для определения параметров пара в камерах отборов главной турбины на линию действительного процесса расширения пара наносятся изобары, соответствующие давлениям в камерах отборов турбины. В точках пересечения изобар с линией действительного процесса расширения пара определяются энтальпии пара в камерах отборов.
Рис. 2. Построение процесса расширения пара в турбине и в приводной турбине питательного насоса в h,S–диаграмме
Построение процесса расширения пара в ЦНД.
Параметры пара на входе в ЦНД определяются параметрами пара на выходе из СПП.
Потери давления до СПП (DРТ)
ΔpТ=0.02%
PТ=pIII.(1-ΔpТ)=1,273.(1-0,02)= 1,247 МПа
sТ= f(pТ,xIII)= 6,508 кДж/(кг.K)
hТ= f(pТ,xIII)=2781,1 кДж/кг
Потери давления в СПП (DРспп), согласно [3, 4] определяют по формуле
DРспп = 0,08×Рразд, (8)
Этот перепад равномерно распределяем между сепаратором и ступенями перегрева пара. Обозначив число ступеней в СПП (сепаратор, 1-я и 2-я ступени перегрева).
Состояние пара за сепаратором.
Рс = Рразд×(1– DРс) (9)
Δpc=0.02%
pс=pТ.(1-Δpc)= 1,247.(1-0,02)= 1,222 Мпа
tс=ts=f(pc)= 188,8°С
Конструкция сепарационных устройств современных СПП обеспечивает влажность пара на выходе из сепаратора не более 1 %, т.е. хсвых = 0,99.
По Рс и хсвых по h,S – диаграмме или с использованием соотношения (4) и [5] определяем энтальпию пара на выходе из сепаратора (hcвых).
sс= f(pc, хсвых)= 6,515 кДж/(кг.K)
hс= f(pc, хсвых)= 2784,4 кДж/кг
Состояние пара за первой ступенью пароперегревателя (ПП1) определяется давлением пара за первой ступенью (Рпп1), которое можно рассчитать с помощью (9), и температурой tПП1, которая определяется по заводским данным [3, 4]
Рпп1» Рс×(1– DРпп1)
Δpпп1= 0.03%
pпп1=pс.(1-Δpпп1)= 1,222.(1-0,03)= 1,186 МПа
Для определения температуры и энтальпии на выходе из ПП1, можно задаться величиной перегрева пара на выходе из ПП1. Она обычно колеблется в диапазоне 5… 10 °С. По найденной tпп1 определяем hпп1 и sпп1.
ts,пп1= f(pпп1)=187,4
tпп1=ts,пп1+10=197,4 °С
sпп1= f(pпп1, tпп1)= 6,584 кДж/(кг.K)
hпп1= f(pпп1, tпп1)= 2810,3 кДж/кг
Состояние пара за второй ступенью пароперегревателя (hПП2) определяется аналогично первой ступени.
Рпп2» Рпп1×(1– DРспп/n),
tпп2= 250 °С
Δpпп2= 0.03%
pпп2=pпп1.(1-Δpпп2)= 1,186.(1-0,03)= 1,150 МПа
sпп2= f(pпп2, tпп2)= 6,853 кДж/(кг.K)
hпп2= f(pпп2, tпп2)= 2937,5 кДж/кг
tпп2 – определяется по заводским данным [3, 4]
Процесс расширения пара в части среднего давления строится аналогично ЦВД. Состояние пара перед соплами первой ступени ЦСД, принимая дросселирование в клапанах ЦСД в соответствии с (2), определится
Рцсд»(1 – DРпу)×Рпп2, hцсд = hпп2
Начальная точка процесса расширения пара в ЦСД находится на пересечении изобары РЦСД и линии энтальпии hЦСД. Конечная точка процесса расширения пара в ЦСД определяется давлением за последней ступенью ЦСД (Рцсдвых, см. [3, 4]).
p0ЦCД=pп2.(1-Δpпу)= 1,150.(1-0,02)= 1.127 МПа
t0ЦCД= 250 °С
h0=hпп2= 2937.5 кДж/кг
s0(p0,t0)= 6.864 кДж/(кг.K)
Построение процесса расширения пара в ЦНД.
В турбинах, где отсутствует ЦСД, состояние пара на входе в ЦНД определяется аналогично тому, как описано выше для ЦСД.
Для турбин, в которых присутствует ЦСД, состояние пара перед соплами первой ступени ЦНД (Рцнд, hцнд), принимая величину дросселирования в размере, рекомендуемом [3, 4], определится
Рцнд = (1 – DРпу)× Рцсдвыхhцнд = hцсдвых
Начальная точка процесса расширения в ЦНД на h,S – диаграмме находится на пересечении изобары РЦНД и линии энтальпии hЦНД.
p0ЦНД=pвыхЦСД.(1-ΔpПУ)= 0,275.(1-0,05)= 0.261 МПа
h0=hV= 2708.1 кДж/кг
s0(p0,h0)= 7.011 кДж/(кг.K)
Параметры в конце действительного процесса расширения пара в ЦНД определятся давлением за последней ступенью Рк и hoiЦНД[3, 4].
Рк =0,0045 Мпа
hoiЦНД=0,82
hкид= f (pк, s0цнд)= 2125,6 кДж/кг
Энтальпия пара в конце действительного процесса расширения в ЦНД (hkд) определится из соотношения
hkд = hцнд – (hцнд – hкад)×hoiцнд,
где hкад – энтальпия в конце адиабатического процесса расширения пара в ЦНД.
Параметры пара в камерах отборов ЦСД и ЦНД определяются аналогично тому, как это описано для ЦВД.
hkд = h0цнд – (h0цнд – hкид)×hoiцнд =2708-(2708-2125,6) .0,82= 2230,5 кДж/кг
Состояние пара на входе в конденсатор главной турбины с учетом потерь с выходной скоростью в последней ступени ЦНД (Dhв.с.) определится
hк = hkд + Dhв.с. (10)
по [4]: Dhв.с.= 24 кДж/кг
hк = hkд + Dhв.с.= 2254,5 кДж/кг
Аналогично выполняется построение процесса расширения пара в других цилиндрах главной турбины и турбины привода питательного насоса.
Для определения параметров пара в камерах отборов главной турбины на линию действительного процесса расширения пара наносятся изобары, соответствующие давлениям в камерах отборов турбины. В точках пересечения изобар с линией действительного процесса расширения пара определяются энтальпии пара в камерах отборов.
Определяем энтальпии в отборах и на выходе из ЦНД при идеальном процессе расширения.
hIVид(pIV,s0)= 2811,9 кДж/кг
hVид(pV,s0)= 2657,7 кДж/кг
hVIид(pVI,s0)= 2550,2 кДж/кг
hVIIид(pVII,s0)= 2372,6 кДж/кг
Определим значения энтальпий в отборах и на выходе из ЦНД в действительном процессе расширения пара в ЦНД (с учетом значения η =0,82)
hIV=h0-(h0-hIVид).ηoiЦНД=2937,6-(2937,6-2811,9).0,82=2834,5кДж/кг
hV=h0-(h0-hVид).ηoiЦНД=2937,6-(2937,6-2657,7).0,82=2708,0 кДж/кг
hVI=h0-(h0-hVIид).ηoiЦНД=2937,6-(2937,6-2550,2).0,82=2578,6 кДж/кг
hVII=h0-(h0-hVIIид).ηoiЦНД=2937,6-(2937,6-2372,6).0,82=2433,0 кДж/кг
hкд=h0-(h0-hkид).ηoiЦНД=2937,6-(2937,6-2125,6).0,82=2230,5 кДж/кг
На основании полученных давлений в отборах и полученных энтальпий пара определим значения энтропий, температуры и степени сухости пара в характерных точках процесса в ЦНД.
sIV(pIV,hIV)= 6,913 кДж/(кг.K)
sV(pV,hV)= 6,989 кДж/(кг.K)
sVI(pVI,hVI)= 7,088 кДж/(кг.K)
sVII(pVII,hVII)= 7,187 кДж/(кг.K)
skд(pk,hkд)= 7,356 кДж/(кг.K)
tIV(pIV,hIV)= 193,4 °С
tV(pV)= 130,5 °С
tVI(pVI)= 100,4 °С
tVII(pVII)= 70,2 °С
tk(pk)= 31,0 °С
xIV(tIV,hIV)= перегретый пар
xV(tV,hV)= 0,994
xVI(tVI,hVI)= 0,956
xVII(tVII,hVII)= 0,917
xкд(tk, hkд)= 0,865
hk= hkд +ΔhвсЦНД=2254,5 кДж/кг
xk(рk,hk)= 0,875
Построение процесса в приводной турбине питательного насоса.
Состояние пара перед соплами первой ступени приводной турбины определяется гидравлическими сопротивлениями участка паропровода от СПП до приводной турбины и паровпускных устройств.
В соответствии с [3, 4] гидравлическое сопротивление паропроводов (DРПП) рекомендуется принимать из расчета
DРпп= (0,04¸0,09)Рпп2, (11)
Тогда давление перед соплами первой ступени приводной турбины (Ртп) определится на основании соотношения (5) и (11).
Ртп = Рпп2×(1 – DРпп – DРпу) (12)
Начальная точка процесса расширения пара в приводной турбине на h,S – диаграмме находится на пересечении изобары РТП с линией энтальпии hпп2.
Энтальпия в конце действительного процесса расширения пара в турбине привода питательного насоса и энтальпия пара на входе в конденсатор приводной турбины определяется значением давления за последней ступенью Рктп, усредненным КПД приводной турбины hoiтп и потерями с выходной скоростью в приводной турбине hв.с.ТП, аналогично тому, как это определялось в ЦНД главной турбины.
DРпп = 0.09 %
DРпу =0.02 %
Ртп = Рпп2×(1 – DРпп – DРпу)= 1,024 МПа