где h=0,42м – высота трубного элемента с учетом межфланцевого торцевого зазора.
4.4 Окончательные размеры рекуператора.
Число рядов труб по ширине рекуператора:
.Число рядов труб по высоте рекуператора с учётом возможности увеличения высоты последнего прохода на 1 трубу:
.Ширина насадки рекуператора:
.Число рядов труб по длине рекуператора:
,где S2=0,304м – шаг труб по длине рекуператора.
Длина насадки рекуператора:
.Высота насадки рекуператора:
.Действительная поверхность теплообмена.
.4.5 Расчет аэродинамического сопротивления воздушного тракта.
где lТ – коэффициент трения для каналов из огнеупоров (0,05);
N=1 – число горизонтальных проходов;
dэ – эквивалентный диаметр для вертикальных каналов (0,114м);
b =1/273- коэффициент объемного расширения газов;
g=9,81 м/с2 – ускорение свободного падения;
wВ,О=1,5 м/с; rВо=1,293 кг/м3;
коэффициенты местных сопротивлений:
x1 =0,5;
x2 =0,3;
x4 =1,2;
x7 =к×(S2/S1×np×a+b)=1,4×(304/305×54×0,1+2)=10,335 ,
где к – коэффициент учитывающий турбулентность движения газа;
np=М1 – 1=54 – число межрядных проходовпо длине горизонтальных каналов;
a,b – коэффициенты зависящие от S2 и диаметра труб (a=0,1;b=2).
4.6Расчет аэродинамического сопротивления тракта продуктов сгорания.
где lТ – коэффициент трения для каналов из огнеупоров (0,05);dэ – эквивалентный диаметр для вертикальных каналов (0,114);
x5, x6 –коэффициенты местных сопротивлений (0,5; 0,6);
rПсо, rво– плотность продуктов сгорания и воздуха;
b - коэффициент объемного расширения газов.
5. Выбор горелочных устройств.
Для данной методической печи используем горелки типа “труба в трубе”.
Примем следующее распределение тепла по зонам печи [8]:
- томильная зона – 15%;
- первая сварочная зона:
- верхняя – 20%;
- нижняя – 22,5%;
- вторая сварочная зона:
- верхняя – 20%;
- нижняя – 22,5%.
Число горелок в каждой зоне:
где Sг – шаг горелок [8], м;
k – число рядов горелок.
Пропускная способность одной горелки по газу:
.Давление газа перед горелкой принимаем 4 кПа, для воздуха – 0,5 кПа.
Первая сварочная зона.
Теплота сгорания топлива: QHP=8095,6 кДж/м3.
Газ холодный (20°С): rГО=1,194 кг/м3.
Температура подогрева воздуха: tВ=454°С.
Удельный расход воздуха: VВ=2,1021 м3/м3.
Расход воздуха на горелку:
Расчётный расход воздуха при подогреве его до 454оС:
где k =1,56 – коэффициент определяется по рис.5а [8].
По рис.5а [8], по расчётному расходу воздуха и давлению перед горелкой 0,5 кПа определяем тип горелок: ДНБ-275/dГ.
Расчётный расход газа:
где kt – определяется из рис.6 [8];
kp=1,31 кг/м3 – определяется из рис.7 [8].
При давлении 4 кПа и расчётном расходе газа VГрас=0,405 м3/с диаметр газового сопла – dГ =85 мм.
Проверим скорости в характерных сечениях горелки. По рис.8[8] найдём скорости Wг20=65 м/с и воздуха– Wв20=20 м/c на выходе из горелки при t=20 оС.
Действительные скорости сред:
Отношение скоростей:
Отношение скоростей находится в пределах допустимого [8]. По табл.4 [8] определяем размеры горелки ДНБ-275/85 (см. прил 1.).
Скорость газовой смеси на выходе из носика горелки:
Скорости движения сред в подводящих трубопроводах:
6. Расчет газового, воздушного и дымового трактов нагревательных печей.
6.1 Определение размеров газо- и воздухопроводов.
Участок 1 диаметром d1(D1) и длиной l1(L1) соединяет каждую горелку с раздаточным коллектором.
l1 = 6 м – газопровод; L1=3 м – воздухопровод;d1 =D5, aD1= D2
Участок 2 (зонный коллектор) диаметром d2(D2) и длиной l2(L2) обеспечивает равномерное распределение газа(воздуха) на группу горелок данной зоны отопления.
Задаемся рациональными скоростями движения газа и воздуха:
wГ2=15 м/с; wВ2=8 м/с.
Площадь проходного сечения трубы для газа:
, где V2=BБ×0,225=2,971 м3/с.Отсюда диаметр трубы:
;Площадь проходного сечения трубы для воздуха:
, где V2=BБ×0,225=2,971 м3/с.Отсюда диаметр трубы:
.Длина l2 =L2=Bn+2=11,6 м.
Участок 3 диаметром d3(D3) и длиной l3(L3) соединяет зонный коллектор с печным. На нем размещают дроссельный клапан для плавного регулирования расхода газа(воздуха) на группу горелок зоны и измерительную диафрагму для контроля расхода газа (воздуха) на зону отопления.
l3=L3=12 м; d3=d2 =0,56154 м; D3=D2=0,76892 м.
Участок 4 диаметром d4(D4) и длиной l4(L4) обеспечивает подвод газа (воздуха) к печи из цехового газопровода (воздухопровода) и раздачу его по зонам коллектора.
Диаметр трубы газа:
;Диаметр трубы под воздух:
.Общая длина l4=L4=35 м.
6.2 Расчёт дымового тракта.
Дымовой тракт представляет собой систему каналов - боровов, обеспечивающих движение продуктов горения из печи к дымовой трубе. Расчет ведем в соответствии с типовой схемой дымового тракта методической печи. Скорость продуктов горения w02=2,5 м/с [6].
1) Соединение печи с рекуператором.
Проходное сечение борова f1=a´b=2,9×9,6=27,84 м2, а длина l1=5,5 м. Тогда:
2) горизонтальный участок – рекуператор с дымовой трубой.
Длина l2=40 м. Проходное сечение борова:
Выбираем боров с проходным сечением fБ=21 м2 (см. рис.4), [6,прил.6].
Размеры борова: В=3944 (мм) и Н=5681 (мм).
Реальная скорость дымовых газов:
Схема дымового тракта представлена в прил. 2.
Рис.4. Дымовой боров.
6.3 Аэродинамический расчёт дымового тракта.
Потери давления на трение па первом участке (при `t1=1000°C) :
где
Для кирпичных каналов l=0,05 Вт/(м×К).
Плотность дымовых газов rПС,0=1,31 кг/м3 .
Средняя температура газов на втором участке:
Потери давления на трение па 2-ом участке (при `t2=875°C) :
где
Суммарные потери на трение:
Расчет потерь давления на местных сопротивлениях.
Участок 1: при значениях b¢/ b=1,16 и h/ b¢=3,31 по приложению 8 [6] принимаем коэффициент местного сопротивления x1=0,9, а при b¢/ b=2,2 и h/ b¢=1,47 - x2=0,75.
Потери давления находят по формуле: