Смекни!
smekni.com

Регулирование энергетических установок (стр. 5 из 7)

При эксплуатации холодильных машин часто возникают колебания температуры окружающей среды, например сезонные, и связанные с ней температуры и давления конденсации. Если при этом необходимо поддерживать постоянными температуру кипения и холодопроизводительность, то с уменьшением давления конденсации отношение давлений

и массовая производительность G будут уменьшаться, так как удельная холодопроизводительность будет возрастать (см. Рис.6.14, в, где
). В результате характеристика сети представится линией 1 (см. Рис.6.14, а-6.16, 6.18).

Как видно из рассмотренных примеров, область, в которой могут лежать характеристики сети холодильных машин, при одновременном изменении холодопроизводительности и температуры конденсации располагается левее линии 1 (см. Рис.6.14, а) и весьма обширна. Поэтому применение наиболее эффективных способов регулирования приобретает особое значение, так как позволит значительно повысить КПД компрессора при его работе на сеть.

3. Регулирование силовых установок

3.1 Регулирование газотурбинных установок (ГТУ)

Простейшая схема одновальной газовой турбины постоянного горения изображена на фиг.160. Воздух при температуре Т1и давлении р1 поступает в компрессор 1, в котором он сжимается до некоторого давления р4, и температура его при этом возрастает до T4. Из компрессора воздух поступает в камеру сгорания 1, где его температура повышается за счет сжигания топлива, поступающего через форсунку 4. Продукты сгорания при достаточно высоком давлении и при высокой температуре подводятся к турбине 1, в которой совершается расширение газа до давления р1 и температуры T1. В лопаточном аппарате турбины потенциальная энергия газа преобразуется в кинетическую энергию, которая частично используется в виде механической работы, совершаемой посредством рабочих колес и вала.

Температура газа перед турбиной ограничивается из соображений прочности ее деталей и обычно выбирается значительно ниже той, которая получается в камере сгорания при небольших избытках воздуха, требуемых для полного сгорания топлива. В камере сгорания газотурбинных установок для поддержания надлежащей температуры газа перед турбиной подмешивается дополнительное количество воздуха с целью охлаждения газа; по этой причине для ГТУ характерен большой избыток воздуха.

Основные задачи регулирования газовой турбины заключаются в том, чтобы, во-первых, обеспечить возможность ее работы при всех режимах, предусмотренных проектом и допускаемых конструкцией двигателя, и, во-вторых, поддерживать скорость вращения рабочей машины в заданных пределах, а также быстро и безопасно переводить двигатель с одного режима работы на другой. Первая задача относится к статике регулирования газовых турбин, вторая - к динамике регулирования.

Водяные или паровые турбинные установки имеют большие аккумуляторы воды или тепла, что дает возможность управлять машинами путем изменения расхода рабочего тела. Газотурбинные установки такими аккумуляторами не располагают, и единственным источником, позволяющим регулировать ход машины, является топливо, сжигаемое в камере сгорания. Путем изменения расхода тепла можно оказывать влияние на параметры газа перед турбиной, что, в свою очередь, сказывается на удельной выработке энергии и на расходе рабочего тела.

Таким образом, регулировать скорость газовой турбины можно путем воздействия регулятора 5 на распределительные органы топлива. Изменение расхода топлива прежде всего сказывается на температуре продуктов сгорания, а это, в свою очередь, вызывает изменение также других параметров газа. В зависимости от величины этих последних изменений будем различать регулирование с мало меняющимся (первого рода) и сильно меняющимся (второго рода) расходом воздуха.

Регулирование первого рода осуществляется путем изменения температуры газа перед турбиной Т1. Это средство является наиболее, простым и вместе с тем достаточно сильным для того, чтобы ГТУ могла работать на любом предусмотренном режиме. Вместе с изменением температуры меняются также давление и расход газа G турбиной. Поэтому на универсальной диаграмме (фиг.161) в зависимости от температуры Т1 меняется также характеристика турбины АВ. Изменение давления газа перед турбиной сказывается и на изменении количества воздуха AG, подаваемого компрессором.

Для одновальной газотурбинной установки, приводящей во вращение электрический генератор, изменение скорости вращения происходит лишь в небольших пределах, и рабочая линия изображается, на универсальной диаграмме приблизительно отрезком ab, находящимся на линии CD - характеристике компрессора, построенной для n=const (фиг.161). Точка а пересечения характеристик турбины и компрессора отмечает режим, при котором наступает материальный баланс и, следовательно, возможный режим установившейся работы ГТУ.

Возможно также дросселировать перед турбиной весь поток или его часть с целью изменения теплового перепада и расхода. Такой способ регулирования малоэкономичен, и он находит иногда применение лишь как вспомогательное средство, позволяющее осуществлять некоторые режимы работы газотурбинной установки. Регулирование первого рода при частичных нагрузках вызывает значительное снижение экономичности двигателя, главным образом вследствие падения температуры перед газовой турбиной.

Регулирование второго рода осуществляется в значительной мере за счет изменения скорости вращения компрессора, что, в свою очередь, вызывает изменение количества рабочего тела, подводимого к газовой турбине. При этом на универсальной диаграмме две точки а и b рабочей линии лежат на различных характеристиках компрессора CD и CD', которым соответствуют различные скорости вращения (фиг.161). Так как вместе с тем меняются и параметры рабочего тела, то точкам а и b соответствуют также различные характеристики турбины АВ и А'В', построенные для измененной температуры перед турбиной. Регулятор скорости и здесь воздействует на распределительные органы топлива, и только в результате изменившихся температур за камерами сгорания следует изменение скорости вращения компрессора.

Надежность и качество работы ГТУ в значительной мере зависят от автоматических устройств для управления установкой. Задачи регулирования заключаются в том, чтобы обеспечить надежную работу ГТУ на всех необходимых режимах и высокое качество переходного процесса. Для решения этих задач прежде всего отметим особенности движения и процессов в основных элементах ГТУ.

3.2 Регулирование паровых турбин

3.2.1 Регулирование конденсационных турбогенераторов

Простейшая схема конденсационного турбогенератора изображена на фиг.100. Турбина 1 приводит во вращение электрический генератор 1. Пар в турбину поступает через клапан 1. Между клапаном и лопаточным аппаратом турбины расположен паровой объем 5. Значительные паровые объемы могут также находиться между отдельными частями лопаточного аппарата турбины (в двухцилиндровых турбинах и особенно при наличии промежуточного перегрева). Пар из турбины поступает в конденсатор 4.

Пар к турбине подводится из паровых котлов, аккумулирующая способность которых во многих случаях настолько велика, что их в расчетах регулирования можно приближенно считать неограниченным источником рабочего тела, благодаря чему давление и температуру пара перед турбиной в процессе регулирования можно принимать постоянными. В установках с парогенератором, обладающим аккумулирующей способностью лишь в слабой степени, процессы регулирования в турбине и котле следует рассматривать совместно.

Таким образом, регулирование скорости паровых турбин осуществляется путем воздействия регулятора на распределительные органы рабочего тела (клапаны).

Перемещение клапана вызывает дросселирование пара, вследствие чего изменяются количество и качество пара, поступающего в турбину. Такое парораспределение называется дроссельным.

При наличии нескольких клапанов их перемещение вызывает изменение живого сечения сопел путем прикрытия отдельных групп сопел. Такое регулирование называется сопловым. При сопловом регулировании клапаны неизбежно вызывают также дросселирование пара.

Подвод свежего пара может осуществляться не только к первой, но также к различным промежуточным ступеням проточной части турбины. Такое регулирование называется обводным.

Для всех указанных способов регулирования переход от одного режима работы к другому связан с изменением как расхода, так и состояния пара, поступающего в турбину, т.е. используются количественный и качественный принципы регулирования.

Клапанам можно придавать различную форму, которая оказывает большое влияние на характеристики турбин, а следовательно, и на динамику регулирования.

Задача регулирования конденсационных турбогенераторов заключается в поддержании в узких пределах их скорости вращения. Коэффициент неравномерности регулирования обычно задается около 4%, а иногда снижается до 1%.

В качестве командующих органов применяются конические центробежные регуляторы, а также центробежные и зубчатые насосы в соединении с регуляторами давления масла.

Прямое регулирование встречается редко и только в турбинах малой мощности, так как для перемещения паровых клапанов требуется большое усилие. Широко применяется для паровых турбин непрямое регулирование с одинарным, двойным и тройным усилением. Вследствие высоких напряжений, возникающих во вращающихся деталях паровых турбин, жесткие требования предъявляются в отношении ограничения разгона турбогенератора.