Параметры и технические данные ограничителей перенапряжения
Тип ОПН | ОПН-У/TEL110/70 | ОПН-Т/TEL 35/40.5 | ОПН-Т/TEL 10/10.5 |
Класс напряжения сети | Uном =110 кВ | Uном =35 кВ | Uном =10 кВ |
Наибольшее рабочее длительно допустимое напряжение | Uдлит.доп =70 кВ | Uдлит.доп =40.5 кВ | Uдлит.доп=10.5 кВ |
Номинальный разрядный ток,при импульсе 8/20мкс | Iном.разр=10 кА | Iном.разр=10 кА | Iном.разр=10 кА |
Максимальная амплитуда импульса тока 4/10мкс | Iампл =100 кА | Iампл =100 кА | Iампл =100 кВ |
В нейтраль главного понизительного трансформатора ставим разрядники ОПН-Т/TEL 35/38.5 и OПН-Т/TEL 10/10.5.
6.3.2 Выбор дугогасительной катушки
Задача эксплуатации дугогасительной катушки (ДК) состоит в том, чтобы уменьшить ток замыкания на землю и тем самым обеспечить быстрое погасание заземляющей дуги. При значение тока КЗ в изолированной нейтрали более 10 А повляется необходимость установки ДК.
Произведем расчет однофазного тока короткого замыкания на землю в сети 35 кВ.
В сетях с изолированной нейтралью в точке замыкания фазы на землю проходит ток, равный геометрической сумме емкостных токов неповрежденных фаз:
Ic=3×Uфjw×C , (6.4.1)
где Iс-ток замыкания на фазу, А;
С=С0×l-емкость сети, Ф;
w=2p¦-угловая частота,с-1.
С0=в0×10-6/2p¦ , (6.4.2)
где в0-удельная проводимость сети, (в0=2.65см).
Для ВЛ-35 “Самино-1”, “Самино-2”:
С0=2.65×10-6/(2×3.14×50)=8.44×10-9 [Ф/км] ,
С=25.5×8.44×10-9=2.15×10-7 [Ф] ,
Ic=3×(35000/Ö3)×314×2.15×10-7=4.1 [А].
Аналогичным способом определим Icдля остальных ВЛ-35 кВ:
Для ВЛ-35 “Быково”: С0=8.44×10-9 Ф/км, С=1.5×10-7 Ф, Iс=2.86 А;
Для ВЛ-35 “Кошкино”: С0=8.44×10-9 Ф/км, С=1.16×10-7 Ф, Iс=2.2 А;
åIc=4.1+4.1+2.86+2.2=13.26А>10A.
Таким образом необходима установка дугогасительной катушки.
Параметры катушки приведены в таблице 6.9
Таблица 6.9 Параметры дугогасящей катушки
Тип | Типовая мощность, кВ×А | Номинальное напряжение сети, кВ | Номинальное напряжение реактора, кВ | Предельный ток реактора, А | Трансформатор тока | Масса, кг | |
Тип | Масла | Общая | |||||
РЗДСОМ-310/35У1 | 310 | 35 | 38.5/Ö3 | 25 | ТВ-35-III-200/5У2 | 880 | 2100 |
6.4 Выбор шин
6.4.1 Выбор шин на стороне 110 и 35 кВ
Так как расширяемая подстанция блочного типа, то вся ошиновка оборудования выполняется из аллюминиевых труб, которые расчитывает и поставляет предприятие-изготовитель,в связи с этим расчет ошиновки выполненных из аллюминевых труб в проекте не выполняется .
Согласно расчетам предприятия-изготовителя на стороне 110 кВ устанавливаем аллюминиевые трубы наружным диаметром 16 мм, при этом Iдоп=295А>61А;
На стороне 35 кВ устанавливаем аллюминиевые трубы наружным диаметром 20 мм, при этом Iдоп=345А>154А.
6.4.2 Выбор шин на стороне 10 кВ
Iннраб,max=115.5 [A],
gмин= ÖВк /ct= Ö66.3×106 /90=90.47 [мм2].Сборные шины выполним жесткими алюминиевыми.Выбираем однополосные алюминиевые шины прямоугольного сечения размером b´h=50´5 мм:
Iдоп=665 А> Iннраб,max=115.5 A,
условие по допустимому току выполняется.
Площадь поперечного сечения : S=2.49 cм2 ,
масса 1 м шины :0.672 кг ( табл.7.2[2]).
Механическая система:две полосы-изоляторы должны иметь частоту собственных колебаний больше 200 Гц , чтобы не произошло резкого увеличения усилий в результате механического резонанса.Исходя из этого первое условие выбора пролёта:
l£ 0.133×10-2 × 4ÖE×Jn /mn, (6.4.3)
где Jn=b×h3/12 – момент инерции полосы;
mn= 2.152 кг/м ;
E=7×1010 Па – модуль упругости.
Второе условие выбора такое, чтобы электродинамические силы, возникающие при КЗ не вызывали соприкосновение полос:
ln£ 0.216×Öаn/iуд×4ÖE×Jn /кср , (6.4.4)где кср=0.47;
аn=2×0.8=1.6 см – расстояние между осями полос.
По первому условию
Jn=b×h3/12=5×0.53/12=0.34 ,
тогда l=0.133×10-24 Ö 7×1010×0.05/0.672 =0.36 [м].По второму условию
ln=0.216×Ö1.6/ 10.6×103 × 4Ö7×1010×0.05/0.47 =0.78 [м]
Принимаем ln=0.36 м ,
тогда число прокладок в пролете n=l / ln-1 , где l=1.2 м
n=1.2/0.36 – 1=2.3 принимаем n=2
При двух прокладках в пролете, расчетный пролет
ln=l /n+1=1.2/3=0.4 [м].
Определим силу взаимодействия между полюсами:
fn= (iуд2×кср/4×h) ×10-7, (6.4.8)
fn= ((10.6×103)2×0.47/4×0.005) ×10-7=264.05 [Н/м].
Напряжение в материале полос:
fn×ln2
sn= (6.4.9)12×Wn
где Wn= h2×b/6 – момент сопротивления одной полосы ;
Wn= 0.52×5/6=0.21 , тогда
sn =264.05×0.42/12×0.21=16.76 [МПа].
Напряжение в материале шин от взаимодействия фаз:
l2×iуд2 sф= Ö3 ×10-8 , (6.4.10)а×Wср
где Wср = h2×b/3 – момент сопротивления;
Wср = 0.52.5/3=0.42 ,
а=0.8 – расстояние между фазами.
sф=1.732×10-8×1.22×10.62×106/0.8×0.42=8.3 [МПа],
шины остаются механически прочными , если
sрасч=sn+sф£sдоп ; (6.4.11)
sдоп=75 [МПа],
sрасч=16.76+8.3=25.1<75 условие выполняется.
7. РАСЧЕТ УСТРОЙСТВ ЗАЗЕМЛЕНИЯ И МОЛНИЕЗАЩИТЫ
При расчёте молниезащиты используется методика из [3]. Принимаем высоту молниеотвода h=50 м ,(см.рис.6)
Зона защиты одиночного стержневого молниеотвода
О О’K rx M
B B’ C A’ A
Рис.6
Длина отрезков: CA’=CB’=0.75×h=0.75×50=37.5 [м],
Расстояние: CO’=0.8×h=0.8×50=40 [м],
Длина отрезков: CA=CB=1.5×h=1.5×50=75 [м].
Защиты определяются по следующим выражениям:
rx=1.5(h-1.25hx) при 0 £hx£ 2/3h , (7.1)
rx=0.75(h-hx) при hx³ 2/3h. (7.2)
Оптимальная высота молниеотвода определяется из предыдущих выражений по формулам:
hопт = (rx+1.9hx)/1.5 при0 £hx £ 2/3h , (7.3)
hопт = (rx+0.75hx)/0.75 приhx ³ 2/3h (7.4)
При hx=20 м
rx=1.5(50-1.25×20)=37.5 [м],
hопт = (37.5+1.9×20)/1.5=50.3 [м].
При hx=40 м
rx=0.75(50-40)=7.5 [м],
hопт = (7.5+0.75×40)/0.75=50 [м].
Устанавливаем на подстанции 4 молниеотвода (смотри план подстанции).
При расчёте устройства заземления для электроустановок 110 кВ и выше согласно ПУЭ сопротивление заземляющей установки должно быть не более 0.5 Ом.
Принимаем сопротивление естественных заземлителей Rе=1.5 Ом. Расчётное удельное сопротивление грунта :
rрасч=rизм×Y, (7.5)
где Y=1.4 – климатический коэффициент для сухого твердого суглинка,
rизм =Rгр=215 [Ом×м],
тогда:
rрасч=215×1.4=301 [Ом×м].
Находим сопротивление исскуственного заземлителя:
Rи= Rе×Rз/ Rе-Rз=1.5×0.5/1.5+0/5=0.75 [Ом]. (7.6)
В качестве вертикального стержня принимаем стальную трубу длиной 3 м и d=0.05 м. При заглублении вертикального стержня ниже уровня земли на 0.7 м ,т.е Н0=0.7 м
Rв= (rрасч / 2p×L)× [ln(2×L)/d+0.5ln(4H0+L)/(5H0+L)], (7.7)
Rв=(301/18.85)×(4.78+1.22)=95.81 [Ом],
На глубине Н=Н0+L/2=2.2 м
Rв= (rрасч / 2p×L)× [ln(2×L)/d+0.5ln (4H+L)/(5H+L)]
=(301/18.85)×(4.78+1.22)=79.55 [Ом].
Определим общее сопротивление сетки горизонтальных проводников , выполненных из полосовой стали сечением 40´4 мм . Общая длина горизонтальных заземлителей равна 848 м. Число вертикальных стержней примем 100:
Rг= (rрасч / 2p×L)×ln(2×L2)/b×H=(301/18.85)×17.75=283.5 [Ом],
где b=40 мм – ширина полосы
Н=0.7 м .
Вертикальные стержни располагаем через 8.5 м ,отсюда Rг с учётом коэффициента использования h=0.19 соединительной полосы:
Rг= 283.5/0.19=1492.1 [Ом].
Уточняем сопротивление искусственного заземлителя
Rи’= Rи×Rг/ Rи+Rг=1.5×0.5/1.5+0/5=0.749 [Ом].