Выбираем мощность трансформатора из условия:
Sн.т.≥0,5Sрасч (8.2)
Где 0,5 – коэффициент учитывающий возможность работы трансформаторов без допустимых систематических перегрузок и максимальном КПД соответствующем минимальным потерям активной энергии в трансформаторе.
Sрасч –расчетная нагрузка потребителей подсоединенных к одной секции шин.
Sн.т.≥0,5×2586=1293 ква
Принимаем к рассмотрению три варианта:
1) ТМ – 1600/35 номинальная мощность S=1600 ква потери короткого замыкания Рк.з.=16,5 кВт потери холостого хода Рх.х.=2,75 кВт
2) ТМ – 2500/35 S=2500 ква Рк.з.=23,5 кВт Рх.х.=3,9 кВт
3) исходный вариант ТМ – 6300 S=63000 ква Рк.з.=49,1 кВт Рх.х.=13,3 кВт
Проверяем трансформаторы на систематическую нагрузку.
Режим, в течение части цикла которого температура охлаждающей среды может быть более высокой и ток нагрузки превышает номинальный, однако с точки зрения термического износа (в соответствии с математической моделью) такая нагрузка эквивалентна номинальной нагрузке при номинальной температуре охлаждающей среды. Это достигается за счет понижения температуры охлаждающей среды или тока нагрузки в течение остальной части цикла.[5]
Для проверки трансформаторов на систематическую нагрузку на исходном графике нагрузки наносим прямую линию соответствующей номинальной мощности трансформатора. Верхняя часть графика, отсекаемая указанной прямой, является зоной перегрузки трансформатора.[5] Из графиков нагрузки видим, что нагрузка по секциям распределена не равномерно и даже в нормальном режиме с учетом перспективы развития трансформатор № 1 мощностью 1600 ква будет испытывать систематическую перегрузку на 61%, а допускается перегружать систематически на 50% [5]. Таким образом трансформатор мощностью 1600 ква использоваться не может. Поэтому в дальнейших расчетах используем трансформаторы мощностью 2500 и 6300 ква. Трансформаторы мощностью 2500 и 6300 ква в нормальном режиме как видно из графиков нагрузки перегрузок испытывать не будут.
Проверка трансформатора на аварийную перегрузку:
Режим продолжительных аварийных перегрузок
Режим нагрузки, возникающий в результате продолжительного выхода из строя некоторых элементов сети, которые могут быть восстановлены только после достижения постоянного значения превышения температуры трансформатора. Это не обычное рабочее состояние, и предполагается, что оно будет возникать редко, однако может длиться в течение недель или даже месяцев и вызывать значительный термический износ. Тем не менее такая нагрузка не должна быть причиной аварии вследствие термического повреждения или снижения электрической прочности изоляции трансформатора.
Режим кратковременных аварийных перегрузок
Режим чрезвычайно высокой нагрузки, вызванный непредвиденными воздействиями, которые проводят к значительным нарушениям нормальной работы сети, при этом температура наиболее нагретой точки проводников достигает опасных значений и в некоторых случаях происходит временное снижение электрической прочности изоляции. Однако на короткий период времени этот режим может быть предпочтительнее других. Можно предполагать, что нагрузки такого типа будут возникать редко. Их необходимо по возможности быстрее снизить или на короткое время отключить трансформатор во избежание его повреждения. Допустимая продолжительность такой нагрузки меньше тепловой постоянной времени трансформатора и зависит от достигнутой температуры до перегрузки; обычно продолжительность перегрузки составляет менее получаса.[5]
При проверке на аварийную перегрузку учитываем, что в аварийном режиме нет возможности отключать потребителей, так как у них нет второго питания и необходимо использовать перегрузочную способность трансформаторов на определенный период работы.
В аварийном режиме у нас в работе находится один трансформатор и соответственно вся нагрузка подстанции находиться на нем. Для этого необходимо построить другие графики нагрузки. На подстанции «Байдарка», как уже было сказано выше, зимняя нагрузка больше, поэтому для расчетов используем зимний график нагрузки в аварийном режиме и если нагрузки зимой допустимые, то соответственно и летом трансформатор перегружен не будет.
________ Прямая, соответствующая мощности установленного трансформатора 6300ква
________ Прямая, соответствующая мощности проектируемого трансформатора 2500ква
________ График нагрузки с перспективой развития
________ Реальный график нагрузки
Рисунок 8.5 Зимний график нагрузки в аварийном режиме
Из графика видим, что проектируемый трансформатор 2500 ква в аварийном режиме будет испытывать перегрузку. Для тог, чтобы определить допустима ли такая перегрузка преобразуем зимний график нагрузки в аварийном режиме в эквивалентный двухступенчатый график. Согласно литературы [5], в аварийном режиме для трансформаторов мощностью 2500 ква допускаются длительные перегрузки на 80%, а кратковременные на100%
Рисунок 8.6 Эквивалентный двухступенчатый график нагрузки
________ Прямая соответствующая мощности установленного трансформатора в аварийном режиме
________ Эквивалентный двухступенчатый график нагрузки соответствующий мощности проектируемого трансформатора 2500ква в аварийном режиме
________ График нагрузки с перспективой развития
________ Реальный график нагрузки
________ Прямая, соответствующая мощности проектируемого трансформатора 2500ква в аварийном режиме
По преобразованному графику нагрузки в двух ступенчатый рассчитываем коэффициент номинальной загрузки трансформатора.
(8.3)
Где Sэ1 – эквивалентная мощность, соответствующая начальной мощности двух ступенчатого графика.
Sн.т – номинальная мощность трансформатора.
(8.4)Где S1 –Sn – соответствующие мощности первой ступени исходного графика.
t1 – tn – соответствующее время первой ступени исходного графика.
кваТогда
Определяем коэффициент аварийной перегрузки трансформатора К2а
(8.5)Где SЭ2 – эквивалентная мощность в аварийном режиме соответствующая повышенной мощности на двухступенчатом графике определяется по формуле (8.4)
кваТогда
По графику определяем время действительной аварийной перегрузки tп.а. tп.а.=7
По таблице [5] находим допустимый коэффициент аварийной перегрузки.
К2адоп=1,8
К2а=1,47<К2адоп=1,8
Условие выполняется
Следовательно в аварийном режиме такая перегрузка допустима и ущерба от недоотпуска электроэнергии не будет.
Трансформатор мощностью 6300 ква в аварийном режиме перегрузки испытывать не будет.
Как показали расчеты на подстанции «Байдарка» есть возможность вместо трансформаторов мощностью 6300 ква использовать трансформаторы мощностью 2500.
Для того чтобы окончательно убедиться в возможности использовать трансформаторы мощностью 2500 ква приведем экономическое обоснование целесообразности замены трансформаторов одной мощности на другую.
8.1 Экономическое обоснование целесообразности замены трансформаторов одной мощности на другую
Для сравнения принимаем два варианта
1)два трансформатора мощностью по 2500 ква ТМ – 2500/35. Стоимость одного трансформатора 1214620 руб.
2)два трансформатора мощностью по 6300 ква ТМ – 6300/35. Стоимостью одного трансформатора 1845690 руб.
Для обоснования предлагаемого решения необходимо рассчитать следующие показатели: капитальные вложения, эксплуатационные издержки, приведенные затраты, потери электроэнергии и их стоимость, годовую экономию и годовой экономический эффект. [1]
Капитальные вложения определяем по формуле:
(8.6)Где Ц – цена приобретения трансформатора, руб