Зависящие от частоты вязко-упругие свойства среды определяются временными корреляционными функциями микроскопического тензора напряжений. Упомянутый тензор выражается через тензор ориентационного параметра порядка
следующим образом: , (6)где
характеризует степень удлиненности жесткого фрагмента молекулы, p – отношение длины фрагмента к его диаметру, – компоненты директора, b – величина, определяющая интенсивность взаимодействия в используемом потенциале среднего поля.Временная корреляционная функция микроскопического тензора напряжений имеет вид
, (7)где V – объем системы,
– тензор релаксации напряжений.Так как микроскопический тензор напряжений определяется через тензор
, то вычисление функции сводится к вычислению временной корреляционной функции величины .С учетом одноосной симметрии нематического эластомера тензор релаксации напряжений определяется следующим выражением
(8)где
( ) – являются некоторыми неизвестными функциями времени t.Введем нормированную функцию напряжений
. При вычислении этих функций применим метод функций памяти Цванцига-Мори.Комплексная корреляционная функция может быть представлена в виде
Тогда, зависящие от частоты коэффициенты вязкости определяется как
. (10)Для вычисления функции
использовано уравнение Цванцига-Мори , (11)где
– функция памяти, которую будем моделировать с помощью функции (12)Параметры
и выражены через коэффициенты разложения в ряд по времени функции релаксации напряжений вплоть до . Величина определяется формулой , (13)в которой
, .В итоге коэффициенты вязкости определяются как
, (14)в которой
(i = 1–8) имеют смысл некоторых времен корреляции, а выражается через функцию памяти (12).Численные результаты для времен корреляции и коэффициентов вязкости при нулевых частотах получены при
K, м–3 (число фрагментов в единице объема): с, с, с, с, с. В свою очередь коэффициенты вязкости при равны: Пас, Пас, Пас, Пас, Пас, Пас.Полученные впервые численные результаты имеют разумный физический смысл для невырожденных состояний нематических эластомеров. В невырожденном случае коэффициенты вязкости
, , , при ведут себя как .Давно известны явления усиления пластического деформирования и возникновения хрупкости металлов при воздействии на них металлических расплавов, а также мезо- и нанодиспергирования материалов при контакте с жидкой средой, например, превращения монокристаллов цинка и олова в поликристаллы под действием жидкого галлия [1]. Этот круг явлений и процессов известен по названием эффект Ребиндера (диплом на открытие № 28). Были попытки обосновать эти явления термодинамически на основе явления адсорбции и внедрения жидкой фазы по границам зерен поликристаллов и понижения поверхностной энергии, в том числе с учетом запасенной упругой энергии, связанной с усилением дислокационной структуры вещества при механической обработке. Нестрогость такого подхода связана с неучетом квантовой теории твердых тел и развитых нами представлений о эффектах сильной фонон-электронной связи, которые проявляются в процессах структурообразования, плавления и растворения [2-4]. Противоречивость традиционного подхода проявляется в использовании поверхностного натяжения s для нанообъектов, в том числе рассмотрении роста s при уменьшении размера частиц [1] и поиске какого-либо специфического механизма превращения упругой энергии дислокационной сетки в поверхностную энергию, а также тем, что дислокационная сетка скорее упрочняет, а не ослабляет материал.
Одним из механизмов диспергирования материалов рассматривалось их растворение и повторное объединение растворенных атомов и молекул в дисперсных частицах. Роль жидкости при этом связывалась с ростом в ней скорости диффузии на много порядков по сравнению с твердым телом. Иногда диспергирование связывается с тепловым возбужденим акустических волн и превышением в области изгиба предела прочности материала [1]. Хотя в целом правильно указывалось, что отщепление коллоидных частиц от поверхности материала осуществляется под действием тепловых колебаний, неверно говорить о самопроизвольном диспергировании. Несмотря на множество работ в этом направлении до настоящего времени не указаны фундаментальные причины измения прочности и пластичности твердых тел при контакте с жидкими средами, что широко используется в технологических поцессах. В целом классический термодинамический подход с использованием феноменологических величин является ограниченным и временным.
Нами развивается существенно новый подход в физике процессов структурообразования в конденсированном состоянии вещества на основе обобщения огромного экспериментального материала, и в первую очередь наиболее однозначно интерпретируемых спектроскопических данных. Фактически речь идет о создании нелинейно-квантовой макрофизики (НКМ), которая является дальнейшим развитием и обобщением квантовой механики сложных систем и физики многоволновых нелинейных резонансных взаимодействий, статистической физики, термо- и упругодинамики. Используемый подход основывается на рассмотрении новых сложных квантовых закономерностей в многочастичных системах и эффектов сильного фонон-электронного взаимодействия [2-4], а также установлении коллективно-квантового характера наблюдаемых макроскопичесих величин (тепло- и электропроводности, вязкости, диэлектрической проницаемости, поверхностного натяжения и др.) и важной роли нелинейных резонансных взаимодействий колебательных мод конденсированных сред. Нелинейно-квантовый характер анализируемых процессов доказывается установлением единства процессов плавления и растворения [4], связанных с возбуждением высших колебательных состояний и их взаимодействием с электронными состояниями и перестройкой последних, что связано с изменением структуры веществ и их свойств.