Рентгенография. Запись рентгеновского изображения непосредственно на фотопленке называется рентгенографией. В этом случае исследуемый орган располагается между источником рентгеновского излучения и фотопленкой, которая фиксирует информацию о состоянии органа в данный момент времени. Повторная рентгенография дает возможность судить о его дальнейшей эволюции.
Рентгенография позволяет весьма точно исследовать целостность костных тканей, которые состоят в основном из кальция и непрозрачны для рентгеновского излучения, а также разрывы мышечных тканей. С ее помощью лучше, чем стетоскопом или прослушиванием, анализируется состояние легких при воспалении, туберкулезе или наличии жидкости. При помощи рентгенографии определяются размер и форма сердца, а также динамика его изменений у пациентов, страдающих сердечными заболеваниями.
Контрастные вещества. Прозрачные для рентгеновского излучения части тела и полости отдельных органов становятся видимыми, если их заполнить контрастным веществом, безвредным для организма, но позволяющим визуализировать форму внутренних органов и проверить их функционирование. Контрастные вещества пациент либо принимает внутрь (как, например, бариевые соли при исследовании желудочно-кишечного тракта), либо они вводятся внутривенно (как, например, иодсодержащие растворы при исследовании почек и мочевыводящих путей). В последние годы, однако, эти методы вытесняются методами диагностики, основанными на применении радиоактивных атомов и ультразвука.
Компьютерная томография. В 1970-х годах был развит новый метод рентгеновской диагностики, основанный на полной съемке тела или его частей. Изображения тонких слоев («срезов») обрабатываются компьютером, и окончательное изображение выводится на экран монитора. Такой метод называется компьютерной рентгеновской томографией. Он широко применяется в современной медицине для диагностики инфильтратов, опухолей и других нарушений мозга, а также для диагностики заболеваний мягких тканей внутри тела. Эта методика не требует введения инородных контрастных веществ и потому является быстрой и более эффективной, чем традиционные методики.
Вредное биологическое действие рентгеновского излучения обнаружилось вскоре после его открытия Рентгеном. Оказалось, что новое излучение может вызвать что-то вроде сильного солнечного ожога (эритему), сопровождающееся, однако, более глубоким и стойким повреждением кожи. Появлявшиеся язвы нередко переходили в рак. Во многих случаях приходилось ампутировать пальцы или руки. Случались и летальные исходы.
Было установлено, что поражения кожи можно избежать, уменьшив время и дозу облучения, применяя экранировку (например, свинец) и средства дистанционного управления. Но постепенно выявились и другие, более долговременные последствия рентгеновского облучения, которые были затем подтверждены и изучены на подопытных животных. К эффектам, обусловленным действием рентгеновского излучения, а также других ионизирующих излучений (таких, как гамма-излучение, испускаемое радиоактивными материалами) относятся: 1) временные изменения в составе крови после относительно небольшого избыточного облучения; 2) необратимые изменения в составе крови (гемолитическая анемия) после длительного избыточного облучения; 3) рост заболеваемости раком (включая лейкемию); 4) более быстрое старение и ранняя смерть; 5) возникновение катаракт. Ко всему прочему, биологические эксперименты на мышах, кроликах и мушках (дрозофилах) показали, что даже малые дозы систематического облучения больших популяций вследствие увеличения темпа мутации приводят к вредным генетическим эффектам. Большинство генетиков признает применимость этих данных и к человеческому организму. Что же касается биологического воздействия рентгеновского излучения на человеческий организм, то оно определяется уровнем дозы облучения, а также тем, какой именно орган тела подвергался облучению. Так, например, заболевания крови вызываются облучением кроветворных органов, главным образом костного мозга, а генетические последствия – облучением половых органов, могущим привести также и к стерильности.
Накопление знаний о воздействии рентгеновского излучения на организм человека привело к разработке национальных и международных стандартов на допустимые дозы облучения, опубликованных в различных справочных изданиях.
Кроме рентгеновского излучения, которое целенаправленно используется человеком, имеется и так называемое рассеянное, побочное излучение, возникающее по разным причинам, например вследствие рассеяния из-за несовершенства свинцового защитного экрана, который это излучение не поглощает полностью. Кроме того, многие электрические приборы, не предназначенные для получения рентгеновского излучения, тем не менее генерируют его как побочный продукт. К таким приборам относятся электронные микроскопы, высоковольтные выпрямительные лампы (кенотроны), а также кинескопы устаревших цветных телевизоров. Производство современных цветных кинескопов во многих странах находится сейчас под правительственным контролем.
Виды и степень опасности рентгеновского облучения для людей зависят от контингента лиц, подверженных облучению.
Профессионалы, работающие с рентгеновской аппаратурой. Эта категория охватывает врачей-рентгенологов, стоматологов, а также научно-технических работников и персонал, обслуживающий и использующий рентгеновскую аппаратуру. Принимаются эффективные меры по снижению уровня радиации, с которым им приходится иметь дело.
Пациенты. Строгих критериев здесь не существует, и безопасный уровень облучения, который получают пациенты во время лечения, определяется лечащими врачами. Врачам не рекомендуется без необходимости подвергать пациентов рентгеновскому обследованию. Особую осторожность следует проявлять при обследовании беременных женщин и детей. В этом случае принимаются специальные меры.
Методы контроля. Здесь имеются в виду три аспекта: 1) наличие адекватного оборудования, 2) контроль за соблюдением правил техники безопасности, 3) правильное использование оборудования.
При рентгеновском обследовании воздействию облучения должен подвергаться только нужный участок, будь то стоматологические обследования или обследование легких. Заметим, что сразу после выключения рентгеновского аппарата исчезает как первичное, так и вторичное излучение; отсутствует также и какое-либо остаточное излучение, о чем не всегда знают даже те, кто по своей работе с ним непосредственно связан.
Таким образом, рентгеновские лучи представляют собой невидимое электромагнитное излучение с длиной волны 105 – 102 нм. Рентгеновские лучи могут проникать через некоторые непрозрачные для видимого света материалы. Испускаются они при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчастый спектр). Источниками рентгеновского излучения являются: рентгеновская трубка, некоторые радиоактивные изотопы, ускорители и накопители электронов (синхротронное излучение). Приемники – фотопленка, люминисцентные экраны, детекторы ядерных излучений. Рентгеновские лучи применяют в рентгеноструктурном анализе, медицине, дефектоскопии, рентгеновском спектральном анализе и т. п.
1. Кудрявцев П.С. История физики. – М., 1956.
2. Кудрявцев П.С. Курс физики – М.: Просвещение, 1974.
3. Рукман Г.И. , Клименко И.С. Электронная микроскопия. – М.: Знание, 1968.
4. Савельев И.В. Курс физики. – М.: Наука, 1989.
5. Храмов Ю. А. Физика. – М.: Наука, 1983.
6. http://www.krugosvet.ru/