Смекни!
smekni.com

Рентгеноструктурний аналіз молибдену (стр. 7 из 15)

Відзначимо, що з трьох видів випромінювань, вживаних для дослідження структури рідин, найбільш підходить рентгенівське. Щоб в цьому переконатися, порівняємо енергію нейтрона і рентгенівського фотона, а також час прольоту ними відстані порядку міжатомного, тобто 10-10м. При цьому

Eф =hc/λEn =h2/(2mλ2)

звідки

Eф =2mcλ/h = 105 En(68)


Оскільки швидкість фотона c ≈ 108 м/с, а швидкість нейтрона υn=(3kT/m)1/2 = 103 м/с, той час проходження ними відстані порядка 10-10 мскладає 10-18 с для фотона і 10-13 с для нейтрона. Отже, енергія рентгенівських фотонів майже в 105 разів більше, ніж енергія нейтронів при тій же довжині хвилі. У стільки ж разів менше тривалість взаємодії фотона з атомом. Тому для рентгенівського випромінювання непружне розсіювання атомів не виконує ролі, для нейтронів же воно складає значну частину загального розсіювання, що ускладнює методику дифракційного експерименту. Разом з цим слабке поглинання нейтронів дозволяє одержувати діфрактограми від рідких металів, сильно поглинаючих рентгенівське випромінювання. Застосування до рідин електронографічних досліджень зв'язане з рядом важкоусуваємих побічних ефектів. Електрони є зручним засобом вивчення будови молекул газів, структури кристалічних і аморфних тіл.

Розсіювання однаковими атомами

Розглянемо розсіювання рентгенівського випромінювання, електронів і нейтронів сукупністю атомів одного елементу (зріджені інертні гази, розплавлені метали, напівметали і діелектрики). Виведемо рівняння, що зв'язує кутовий розподіл інтенсивності розсіяного випромінювання з радіальною функцією розподілу W(R) якаописує ближній порядок в розташуванні атомів. Припустимо, що паралельний пучок монохроматичного проміння довжиною хвилі λ направлений на зразок досліджуваної речовини, миттєве положення атомів якого визначається векторами R1,R2,…RNщодо довільно вибраного початку відліку. Позначимо F1,F2,…FN— атомні амплітуди розсіювання; N число атомів, що беруть участь в розсіянні. Сумарну амплітуду хвилі, розсіяної даною конфігурацією атомів, можна представити у вигляді

(69)

Відповідну інтенсивність визначимо множенням виразу (69) на його комплексно-зв'язану величину:

або

(70)

де Ieінтенсивність, віднесена до інтенсивності розсіювання одним електроном; Rj— Rk— векторна міжатомна відстань. Подвійна сума містить N2членів. Серед них є N членів, для яких j ≠ k. Для кожного такого члена експоненціальний множник звертається в одиницю. Інші N2 — Nчленів залежать від взаємного розташування атомів. Оскільки, по припущенню, всі атоми системи однакові, вираз (70) приймає вигляд

(71)

Воно визначає інтенсивність розсіяного випромінювання, обумовленого миттєвим розташуванням атомів. Проте дифракційний експеримент дає не миттєву, а середню за час експозиції картину розсіювання.

Для того, щоб теоретично знайдений кутовий розподіл інтенсивності і одержане з досвіду відповідали один одному, необхідно всі члени подвійної суми в (71) усереднити по всіх можливих положеннях атомів в опромінюваному об'ємі зразка. Результат усереднювання залежатиме від того, чи є міжатомний вектор Rjk = RjRkпостійним по модулю або ж що безперервно змінюється від точки до точки. Випадок Rjk = constвідноситься до молекули, другої — до речовини з безперервним розподілом атомів. Досліджуємо газ, молекули якого складаються з n атомів. Якщо тиск газу не дуже великий, то за кінцевий проміжок часу всі орієнтації молекул зустрічатимуться однаково часто. Отже, щоб одержати повну інтенсивність розсіювання в газі, потрібно визначити середнє значення інтенсивності для однієї молекули і помножити його на число молекул газу.

Щоб визначити середнє значення I(S), розглянемо в молекулі атоми j і k.Сумістимо початок координат з центром атома j. За вісь відліку кута α приймемо вектор nn0 паралельний осі Z. Тоді вірогідність того, що напрям вектора Rjkскладає з осями координат кути, укладені між α і α + dα, φ і φ + dφ, рівна відношенню елементу сферичної поверхні до поверхні сфери:

(72)

Умножаючи (71) на (72) і інтегруючи по кутах α і φ, знайдемо для однієї молекули формулу вперше одержану Дебаєм.

(73)

Вона описує зв'язок між кутовим розподілом інтенсивності розсіювання окремими молекулами і їх структурою. Якщо молекули газу двухатомні, то інтенсивність розсіювання ними рівна

(74)

При малих значеннях S інтенсивність I(S)наближається до 4F2, а при великих S — до 2F2. У області проміжних значень S крива має максимуми і мінімуми, положення яких визначимо, прирівнявши нулю похідну функції (74). Припускаючи, що атоми розсіюють як точки, що справедливе для нейтронів, одержимо рівняння tgSR = SR. З його рішення виходить, що перший максимум I(S)з'являється при S1R1 = 2,459π = 7,73звідки

R1 = 7,73/S1 (75)

Насправді атоми розсіюють рентгенівське випромінювання і електрони не як точки і функція F2(S), що фігурує як співмножник у формулі (74), швидко убуває у міру зростання S. В результаті максимуми на кривій розсіювання стають менш чіткими, їх положення зміщується у бік великих S. Тому, щоб по формулі (75) обчислити відстань між атомами в двоатомній молекулі, необхідно розділити інтенсивність, заміряну для кожного кута, на атомний чинник, відповідний цьому куту. При цьому виходить функція інтенсивності а(S)= 1 + sinSR/(SR) перший максимум якої описується формулою (75). Якщо молекула містить більше двох атомів, то експериментальна крива інтенсивності визначиться сумою кривих, описуваних рівнянням (74). При цьому положення першого максимуму може не відповідати значенню R1. Для рідин і аморфних тіл обчислення середнього значення подвійної суми у виразі (71) роблять за допомогою радіальної функції розподілу W(R), пов'язаної з вірогідністю знаходження атома j в елементі об'єму dVjа атома k— в елементі dVk, співвідношенням

(76)

де V — об'єм розсіюючої частини зразка; Rjk— відстань між парою атомів.

Середнє значення часток інтенсивності, що вносяться парами атомів j і k, виходить при множеннях кожного члена в подвійній сумі на (76) і інтеграціях по елементах об'єму як для dVjтак і для dVk. Отже,

(77)

При збільшенні Rjkфункція W(Rjk)→1, тому її зручно уявити у вигляді

W(Rjk) = [W(Rjk) — 1]+1 (78)

Припускаючи, що всі N(N — 1) членів подвійної суми рівні між собою, і нехтуючи одиницею в порівнянні з N, маємо

(79)

Або<I> = NF2(1 + NX1 + NX2) (80)

Розглянемо інтеграл

(81)

Інтеграція по Vjрозповсюджується на весь об'єм розсіюючої частини зразка, який можна прийняти за сферу радіусу L. Що ж до об'єму Vkтой його аналітичний вираз залежить від взаємного розташування атомів. Але оскільки функція W(Rjk) сферично симетрична і при Rjk > Rkрівна одиниці, можна припустити, що Vkмає форму сфери, радіус Rkякої визначає протяжність ближньої впорядкованості атомів.

Щоб обчислити подвійний інтеграл (81), припустимо, що вірогідність знаходження атома усередині об'єму V скрізь однакова. Тоді

Сумісний центр атома j з початком координат. Положенняатома kпо відношенню до атома j визначатиметься відстанню R і кутами α і φ. Вираз (81) перетвориться до вигляду

(82)

Інтегруючи (81), одержимо

(83)

Подвійний інтеграл обчислюється точно в припущенні, що розсіююча частина зразка має форму сфери радіусу L.

(84)

Підінтегральний вираз розпадається на два множники, одні з яких залежить від координат атома j а інший — від координат атома k.При цьому кожна інтеграція розповсюджується на весь об'єм V.Маємо

(85)

Підставляючи в(80) формули(83) і(85) знаходимо що усереднена інтенсивність розсіювання рівна

(86)

Оскільки функція W(R)= 1 при R ≥ Rkто межі інтеграції від 0 до можна замінити межами від 0 до Rk. Враховуючи, що W(R) = Nρат(R)/V, а N/V = <ρат> одержимо