Смекни!
smekni.com

Сили тяжіння (стр. 3 из 4)

На абсолютно гладкій платформі, що рухається рівномірно і прямолінійно, лежить куля масою т;на цій же платформі знаходиться спостерігач. Інший спостерігач стоїть на Землі недалеко від місця, мимо якого незабаром повинна пройти платформа. Очевидно, що обидва спостерігачі пов'язані зараз з інерціальними системами відліку.

Нехай тепер у момент проходження мимо спостерігача пов'язаного із Землею, платформа почне рухатися з прискоренням а, тобто зробиться неінерціальною системою відліку. При цьому куля, що раніше покоїлася щодо платформи, прийде (щодо неї ж) в рух з прискоренням а, протилежним по напряму і рівним по величині прискоренню, придбаному платформою. З'ясуємо, як виглядає поведінка кулі з точок зору кожного з наших спостерігачів.

Для спостерігача, пов'язаного з інерціальною системою відліку – Землею, куля продовжує рухатися рівномірно і прямолінійно в повній відповідності із законом інерції (оскільки на нього не діють ніякі сили, окрім сили тяжіння, врівноважуваною реакцією опори).

Спостерігачу, пов'язаному з неінерціальною системою відліку – платформою, представляється інша картина: куля приходить в рух і придбаває прискорення – а без дії сили (оскільки спостерігач не знаходить дії на кулю яких-небудь інших тіл, що повідомляють кулю прискорення). Це явно суперечить закону інерції. Не виконується і другий закон Ньютона: застосувавши його, спостерігач одержав би, що 0 (сила) = – ma, а це неможливо, оскільки ні m, ні а не рівні нулю.

Можна, проте, зробити закони динаміки застосовними і для опису рухів в неінерціальнихсистемах відліку, якщо ввести в розгляд сили особливого роду — сили інерції. Тоді в нашому прикладі спостерігач, пов'язаний з платформою, може вважати, що куля прийшла в рух під дією сили інерції


Введення сили інерції дозволяє записувати другий закон Ньютона (і його слідства) в звичайній формі ; тільки під діючою силою треба тепер розуміти результуючу «звичайних» сил (F) і сил інерції (Fі):


де m — маса тіла, а — його прискорення.

Сили інерції ми назвали силами «особливого роду», по-перше, тому, що вони діють тільки в неінерціальних системах відліку, і, по-друге, тому, що для них на відміну від «звичайних» сил неможливо вказати, дією яких саме інших тіл (на дане тіло) вони обумовлені. Очевидно, з цієї причини до сил інерції неможливо застосувати третій закон Ньютона (і його слідства); це є третьою особливістю сил інерції.

Неможливість вказати окремі тіла, дією яких (на дане тіло) обумовлені сили інерції, не означає, звичайно, що виникнення цих сил взагалі не пов'язано з дією яких-небудь матеріальних тел. Є серйозні підстави припускати, що сили інерції обумовлені дією всієї сукупності тіл Всесвіту (масою Всесвіту в цілому).

Річ у тому, що між силами інерції і силами тяжіння існує дуже велика схожість: і ті і інші пропорційні масі тіла, на яке вони діють, і тому прискорення, повідомляється тіло кожної. З цих сил, не залежить від маси тіла. За певних умов ці сили взагалі неможливо розрізнити. Хай, наприклад, десь в космічному просторі рухається з прискоренням (обумовленим роботою двигунів) космічний корабель. Космонавт, що знаходиться в ньому, при цьому випробовуватиме силу, що притискує його до «підлоги» (задньої по відношенню до напряму руху стінці) корабля. Ця сила створить точно такий же ефект і викличе у космонавта такі ж відчуття, які викликала б відповідна сила тяжіння.

Якщо космонавт вважає, що його корабель рухається з прискоренням а щодо Всесвіту, то він назве діючу на нього силу силою інерції. Якщо ж космонавт вважатиме свій корабель нерухомим, а Всесвіт — що мчить мимо корабля з таким же прискоренням а, то він назве цю силу силою тяжіння. І обидві точки зору будуть абсолютно рівноправними. Ніякий експеримент, виконаний усередині корабля, не зможе довести правильність однієї і помилковість іншої точки зору.

З розглянутого і інших аналогічних прикладів витікає, що прискорений рух системи відліку еквівалентний (по своїй дії на тіла) виникненню відповідних сил тяжіння. Це положення одержало назву принципу еквівалентності сил тяжіння і інерції (принципу еквівалентності Ейнштейна); даний принцип ліг в основу загальної теорії відносності.

Сили інерції виникають не тільки в тих, що прямолінійно рухаються, але і в неінерціальних системах відліку, що обертаються. Хай, наприклад, на горизонтальній платформі, що може обертатися навкруги вертикальної осі, лежить тіло масою m, пов'язане з центром обертання Про гумовим шнуром (мал. 5). Якщо тепер платформа почне обертатися з кутовою швидкістю ω (і, отже, перетвориться на неинерциальную систему), то завдяки тертю тіло теж буде залучено в обертання. Разом з тим воно переміщатиметься в радіальному напрямі від центру платформи до тих пір, поки зростаюча сила пружності шнура, що розтягується, не зупинить це переміщення. Тоді тіло обертатиметься на відстані r від центру О.

З погляду спостерігача, пов'язаного з платформою, переміщення кулі щодо платформи обумовлено деякою силою Fц.і.. Це є сила інерції, оскільки вона не викликана дією на кулю інших певних тіл; її називають відцентровою силою інерції. Очевидно, що відцентрова сила інерції рівна по величині і протилежна по напряму силі пружності розтягнутого шнура, що грає роль доцентрової сили, яка діє на тіло, що обертається по відношенню до инерциальной системи. Тому


отже, відцентрова сила інерції пропорційна відстані тіла від осі обертання.

Підкреслимо, що відцентрову силу інерції не слід змішувати з «звичайною» відцентровою силою. Це сили різної природи, прикладені до різних об'єктів: відцентрова сила інерції прикладена до тіла, а відцентрова сила — до зв'язку.

На закінчення відзначимо, що з позиції принципу еквівалентності сил тяжіння і Інерції просте пояснення одержує дію всіх відцентрових механізмів: насосів, сепараторів і т.п.

Будь-який відцентровий механізм можна розглядати як обертається неинерциальную систему, що викликає появу поля тяжіння радіальної конфігурації, яке в обмеженій області значно перевершує поле земного тяжіння. В цьому полі більш щільні частинки середовища, що обертається, або частинки, слабко пов'язані з нею, відходять до її периферії (як би йдуть «на дно»).

Вага тіл. Рівняння сили тяжіння. Невагомість

Введення сил інерції спрощує і робить більш наочним рішення цілого ряду питань і задач про рух тіл в неінерціальних системах. Одержимо зараз

уточнені вирази ваги тіла і прискорення сили тяжіння.

Сила, з якою тіло притягується до Землі, називається силою тяжіння. Вага тіла рівна силі, з якою нерухоме щодо Землі і тіло, що знаходиться в пустці, тисне на горизонтальну опору внаслідок тяжіння до Землі. Таким чином, вага тіла рівна силі тяжіння; тому ми часто користуватимемося цими термінами, як рівнозначними.

Якби Земля не мала добового обертання, то вага тіла дорівнювала б силі тяжіння тіла до Землі, визначуваної по формулі (7). Завдяки добовому обертанню Землі (в якому беруть участь і всі земні тіла) на тіло М, що лежить на земній поверхні, окрім сили тяжіння F, направленої по радіусу R до центру О Землі, діє відцентрова сила інерції Fц.і, направлена по лінії продовження радіусуr від осі обертання Землі. Розкладемо Fц.і на дві складові: F’ц.і — у напрямі радіусу R і F’’ц.і— у напрямі, перпендикулярному R. Складова врівноважується силою тертя тіла об земну поверхню; становляча Fц.і протидіє силі тяжіння тіла до Землі. Тому сила тяжіння тіла до Землі, тобто вага P тіла, виразиться різницею сили тяжіння F і становлячої відцентрової сили інерції F 'ц.і:



де φ — географічна широта місцезнаходження тіла, т — маса тіла. Враховуючи формули (7) і (12), одержимо


де ω = 7,3. 10 -5 рад/сек — кутова швидкість добового обертання Землі. Але

r =R.cosφ, тому

на екваторі


Оскільки прискорення сили тяжіння , то

Отже, прискорення сили тяжкості також зменшується від полюса до екватора. Правда, це зменшення таке мале (не перевищує 0,5%), що в багатьох практичних розрахунках, його не враховують.

За допомогою сил інерції можна просто пояснити так званий «стан невагомості». Тіло, схильне цьому стану, не чинить тиску на опори, навіть знаходячись в зіткненні з ними; при цьому тіло не випробовує деформації.

Стан невагомості наступає у разі, коли на тіло діє тільки сила тяжіння, тобто коли тіло вільно рухається в полі тяжіння.

Це має місце, наприклад, в штучному супутнику Землі, виведеному на орбіту і вільно що рухається в полі земного тяжіння, тобто що обертається навкруги Землі.