Смекни!
smekni.com

Сили тяжіння (стр. 4 из 4)

При обертальному русі виникає, як ми вже знаємо, відцентрова сила інерції. Оскільки відцентрова сила інерції, діюча на кожну частинку тіла, що знаходиться в супутнику (і самого супутника), рівна по величині і протилежна по напряму силі тяжіння, діючій на відповідну частинку, то ці сили взаємно врівноважуються. В результаті тіло не піддається деформацій і не чинить тиску на стінки супутника (і інші можливі опори), тобто воно виявляється невагомим.

Невагомими стають і тіла, що знаходяться в космічному кораблі, вільно (з вимкненими двигунами) що переміщається по будь-якій траєкторії в безповітряному просторі в полі тяжіння. Зрозуміло, що разом зі всіма тілами, що знаходяться в кораблі, стає невагомим і космонавт.

Фізіологічне відчуття невагомості у космонавта виражається у відсутності звичних напруг і навантажень, які обумовлені . силою тяжкості. Припиняється деформація внутрішніх органів, зникає постійна напруга ряду скелетних м'язів, порушується діяльність вестибулярного апарату (забезпечуючої відчуття рівноваги людини), пропадає відчуття «верху» і «низу», ускладнюється здійснення деяких природних функцій організму. Такі звичні дії, як, наприклад, виливання води з судини, теж викликають утруднення; воду тепер доводиться буквально витрушувати із посудини.

Для усунення перерахованих і інших труднощів при тривалому перебуванні людини в космосі на космічній станції передбачається створювати штучну «ваговитість». З цією метою станцію конструюватимуть у вигляді великого диска, що обертається, з робочими приміщеннями, розташованими на його периферії. Виникаюча при цьому відцентрова сила інерції виконуватиме роль недістаючої сили тяжіння.

З обертанням Землі навкруги своєї осі зв'язано ще одне важливе явище: відхилення тіл, що рухаються по земній поверхні, від первинного напряму. Нехай тіло масою m, рухаючись прямолінійно в північній півкулі, наприкладуздовж меридіана, перемістилося з широти φ1 якій відповідає лінійна швидкість обертання v1 на широту φ2, якій відповідає швидкість v2(мал. 6). Зберігаючи за інерцією свою первинну швидкість обертання v1, тіло матиме на широті φ2 велику швидкість обертання, ніж земна поверхня, що знаходиться під ним. Інакше кажучи, на широті φ2тіло придбаває прискорення ак щодо земної поверхні, направлене управо перпендикулярно до переміщення s тіла. В результаті тіло відхилиться вправо від первинного (меридіонального) напряму руху і його траєкторія (щодо земної поверхні) виявиться криволінійною. Спостерігач, пов'язаний ізЗемлею (і тому що не помічає її обертання), що обертається, пояснить дане явище дією на тіло деякої сили інерції, направленої управо перпендикулярно до швидкості переміщення тіла і рівної по величині FK= maK. Ця сила одержала назву коріолисової сили, або силиКоріоліса.

Сила Коріоліса діє тільки натіла, що рухаються (щодо Землі). Будучи перпендикулярною до швидкості руху тіла, вона змінює тільки напрям, але не величину цієї швидкості; в північній півкулі кориолисова сила направлена управо, в південній півкулі — вліво. Щоб уникнути непорозумінь підкреслимо, що сила Коріоліса виникає при будь-якому (а не тільки при меридіональному) напрямі руху тел.

Величина сили Коріоліса пропорційна швидкості руху тіла його масі і кутовій швидкості добового обертання Землі. Оскільки кутова швидкість обертання Землі невелика, сила Коріоліса може приймати великі значення і викликати істотні відхилення тільки у тіл, що рухаються з великою швидкістю (наприклад, у міжконтинентальних балістичних ракет, що знаходяться у польоті).

Якщо рух тіла на земній поверхні обмежений (в бічному напрямі) яким-небудь зв'язком, то тіло тиснутиме на цей зв'язок з силою, рівній коріолисовій силі. При тривалій дії сила Коріоліса, не дивлячись на неї порівняльно малу величину, викликає помітний ефект. Завдяки ній річки північної півкулі підмивають праві береги (закон Бера), а повітряні течії придбавають праве обертання (за годинниковою стрілкою). Дією сили Коріоліса обумовлений і підвищений знос правої рейки залізничних колій в північній півкулі.

Приклади розв’язку задач

Задача1. До сухожилля завдовжки l = 12 смі діаметром d = 1,6 ммпідвісили вантаж F= 68,6 н. При цьому воно подовжилося до l1= 12,3 см. Визначити Модуль Юнга Е сухожилля.

Розв’язок. Сухожилля піддається деформації одностороннього розтягування, тому, згідно формулі (4)

де S — площа поперечного перетину, Δl — величина подовження сухожилля.


Оскільки


а то


Задача 2. Знайти силу тяги F, що розвивається мотором автомобіля, який рухається вгору з прискоренням а = 1 м/сек 2(мал. 21). СУхил гори рівний 1 мна кожні 25 мшляху. Вага автомобіля P = 9,8 . 103н. Коефіцієнт тертя k= 0,1.

Розв’язок. Розкладемо вагу автомобіля Р на дві складові (мал. 7): силу F1, що скачує автомобіль з гори (паралель поверхні гори), і силу F2, що притискує його до поверхні гори, тобто силу нормального тиску (перпендикулярна до поверхні гори). Мотор автомобіля, що рухається в гору, повинен долати скачуючу силу F1 і силу тертя Fтр; крім того, він повинен забезпечити автомобілю прискорення а. Тому сила тяги


де Fа— сила, що повідомляє автомобіль прискорення а.

Кут а нахилу гори рівний куту між силами F2 і P (кути з взаємно перпендикулярними сторонами), а по умові задачі


По другому закону Ньютона, де т - маса автомобіля і g прискорення вільного падіння.


Згідно формулі (5)

Тоді можемо написати


Задача 3. Визначити лінійну швидкість v руху Землі навкруги Сонця, приймаючи масу Сонця М = 2 . 10 30 кгі відстань Землі та Сонця R = 1,5 . 108 км. Орбіту Землі вважати круговою.

Розв’язок. На орбіті Землю утримує доцентрова сила , роль якої грає сила тяжіння Сонця F. Тому = F. Але, згідно формулам (7) і (10)


і

де m — маса Землі, γ = 6,67 . 10 -11м3/(кг . сек2) є гравітаційна постійна.

Тоді

звідки

З

Задача 4. Льотчик вагою Р = 70 кгописує в літаку, що летить з швидкість v= 360 км/ч, вертикальну петлю Нестерова радіусом R= 400 м (мал. 8). Визначити силу, що притискує льотчика до сидіння у верхній і в нижній точках цієї петлі.

Розв’язок. При рішенні цієї задачі скористаємося уявленням про сили інерції. В неинерциальной системі відліку — літаку, що робить вертикальну петлю Нестерова, — на льотчика діють дві сили: його вага Р і відцентрова сила інерції Fц.и. Тому сила F, що притискує льотчика до сидіння в будь-якій точці петлі, рівна геометричній сумі сил Fц.и і Р.

З мал. 22 виходить, що у верхній точці петлі ця сила рівна F1= Fц.и – Р, а в нижній крапці — F2 =Fц.и + Р.

Оскільки відцентрова сила інерції виражається тією ж формулою (10), що і доцентрова сила, то

де m маса льотчика.

Тоді

Список використаної літератури:

1. Р.І. Грабовський. „Курс фізики”. – М., Вища школа, 1970, 616с.