Міністерство освіти України
Черкаський національний університет
ім. Богдана Хмельницького
Кафедра фізики
Реферат
на тему:
Сили тяжіння
Черкаси-2003
Зміст:
1. Сили пружності
2. Сили тертя
3. Сили тяжіння(гравітаційні сили)
4. Доцентрова сила
5. Інерціальні і неінерціальні системи відліку. Сили інерції
6. Вага тіл. Рівняння сили тяжіння. Невагомість
7. Приклади розв’язку задач
8. Список використаної літератури
Сили пружності
Дотепер ми говорили про силу взагалі, не цікавлячись її походженням. Тепер перейдемо до розгляду деяких конкретних різновидів сил, широко представлених в природі і техніці і граючих важливу роль в механічних процесах. До них відносяться сили пружності, тертя, тяжіння і деякі інші. Почнемо з розгляду сил пружності.
Як вже наголошувалося, сила може деформувати тіло — зміщувати складові його частинки один щодо одного. При цьому (відповідно до третього закону Ньютона) всередині деформованого тіла виникає протидіюча сила, рівна по величині деформуючій силі і звана силою пружності. Наприклад, вантаж, що розтягує пружину, піддається дії сили пружності пружини. Сили пружності обумовлені взаємодією між частинками (молекулами і атомами) тіла і мають кінець кінцем електричну природу.
Існує декілька видів деформації тіл: одностороннє розтягування, одностороннє стиснення, всестороннє розтягування, всестороннє стиснення, кручення, зсув, вигин. Кожний вид деформації викликає появу відповідної сили пружності.
Досвід показує, що
пружна сила F, що виникає при малих деформаціях будь-якого вигляду, пропорційна величині деформації (зсуви) ∆x:
(1)
де k— коефіцієнт пропорційності. Це положення називається законом Гука. Знак «мінус» указує на протилежність напрямів пружної сили і зсуву.
Деформація називається пружною, якщо після усунення деформуючої сили пружні сили повністю відновлюють первинні форму і розмір тіла. При малих зсувах ∆xдеформацію реальних тіл можна вважати пружною. При великих ∆xвиникає так звана залишкова деформація — тіло не відновлює повністю свої форму і розмір. При значних деформаціях може навіть відбутися руйнування тіла (розрив — при розтягуванні, злам — при вигині і т. п.).
Розглянемо пружну деформацію одностороннього розтягування стрижня (мал. 1). Хай до нижнього кінця закріпленого стрижня завдовжки х і площею поперечного перетину S прикладена деформуюча сила F'. Стрижень подовжиться на величину ∆xі в ньому виникне пружна сила F = - F'. Досвід показує, що подовження пропорційно деформуючій силі і первинній довжині стрижня і обернено пропорційно до площі його поперечного перетину:
(2)
звідки (3)де Е — коефіцієнт, що характеризує пружні властивості речовини стрижня, званий модулем пружності, або модулем Юнга.
Згідно формулі (2) (4)
Вважаючи ∆x = х і S = 1, одержимо Е = F', тобто модуль Юнга чисельно рівний силі, що розтягує удвічі стрижень одиничної площі поперечного перетину. Щоб не виражати модуль Юнга дуже великими числами, його звичайно вимірюють позасистемними одиницями: кГ/мм2 (наприклад, у міді Е ≈ 10 000 кГ/мм2, у сталі E≈ 20 000 кГ/мм2). В СІ модуль Юнга вимірюється в H/м2.
Очевидно, що все висловлене раніше залишиться справедливим і для випадку деформації одностороннього стиснення, якщо тільки рахувати ∆x не подовженням, а укороченням стрижня.
Не зупиняючись на інших видах деформації, відзначимо тільки, що всі вони кінець кінцем можуть бути зведені до відповідних комбінацій деформацій одностороннього розтягування і стиснення. Наприклад, деформація вигину стрижня зводиться до деформації одностороннього розтягування верхньої частини стрижня при одночасній деформації одностороннього стиснення нижньої його частини (мал. 2; F' і F — деформуючі сили). Тому при вигині верхня частина стрижня, так би мовити, працює на розтягування, а нижня — на стиснення. Очевидно, що середня частина стрижня майже не чинить опору вигину. Ця обставина враховується в техніці і знаходить віддзеркалення в природі. Наприклад, стрижні, що працюють на вигин, звичайно роблять порожнистими (трубчастими), чим досягається економія матеріалу і полегшення конструкцій без збитку для міцності. Стебла злакових рослин і кістки птахів мають трубчасту будову, молоде листя, що не окріпнуло, згорнуте трубкою і т.п.
Сили тертя
Сила, перешкоджаюча ковзанню дотичних тіл друг щодо другові, називається силою тертя. Вона направлена по дотичній до поверхні зіткнення тіл протилежно швидкості ковзання даного тіла (тертя ковзання). Тертя існує і у разі нерухомих один щодо одного тіл (тертя спокою). Максимальна сила тертя спокою рівна по величині тій якнайменшій зовнішній силі, яка викликає ковзання тел. З моменту початку ковзання сила тертя дещо зменшується (сила тертя ковзання завжди менше максимальної сили тертя спокою).
Завдяки тертю рівномірний прямолінійний рух тіла можливий тільки тоді, коли сила тертя ковзання урівноважена зовнішньою (рушійної) силою.
Тертя обумовлено шорсткістю дотичних поверхонь — взаємним зачіпляє виступів на них. При достатньо гладких поверхнях головною причиною тертя стають сили зчеплення між молекулами поверхонь, що труть. Досвід показує, що сила тертя Fтp приблизно пропорційна силі Р, що притискує дотичні тіла один до одного (тобто силі нормального тиску):
Коефіцієнт kназивається коефіцієнтом тертя. Він залежить від роду речовини і якості обробки поверхонь, що труть. В деякій мірі він залежить також від відносної швидкості ковзання і від зовнішніх умов (температури, вогкості і т. п.). Слід підкреслити, що коефіцієнт тертя є досить грубою характеристикою сил тертя. Визначається він експериментально по формулі (5). В технічних таблицях звичайно даються середні значення коефіцієнта тертя. Наприклад, для сталі по сталі k= 0,17, для сталі по дереву k = 0,48. Тертя грає дуже велику роль в природі і техніці. За допомогою тертя здійснюється необоротний перехід всіх видів енергії в теплоту. Завдяки тертю може приходити в рух і зупинятися транспорт. Дія органів пересування і хапальних органів живих істот заснована на терті ковзання. Тертя утримує корені рослин в ґрунті, пісок – в залізничному насипі і т.п.
В сільськогосподарській практиці на відмінності значень коефіцієнта тертя у насіння різних зернових культур засновано розділення суміші цього насіння на складові частини. Суміш зерен, наприклад вівса і проса, поволі высыпается з бункера на нескінченну стрічку, розташовану під кутом до горизонту, що рухається. Кут нахилу стрічки підбирається так, щоб зерна вівса утримувалися на ній силою тертя і захоплювалися вгору, а зерна проса, у яких коефіцієнт тертя з матеріалом стрічки менше ніж у зерен вівса, ковзали по стрічці вниз. В результаті зерна вівса і проса зсипатимуться з різних сторін «стрічкового сепаратора».
В тих випадках, коли тертя грає шкідливу роль, його зменшують, поміщаючи між поверхнями, що труть, в'язку рідину (мастило). Тим самим зовнішнє тертя твердих тіл замінюють значно меншим внутрішнім тертям рідини.
Інший спосіб зменшення тертя — заміна ковзання коченням: застосування коліс, катків, кулькових і роликових підшипників. Коефіцієнт тертя кочення в десятки разів менше коефіцієнта тертя ковзання. Істотно, що сила тертя кочення обернено пропорційна радіусу тіла, що котиться. У зв'язку з цим у транспорту, призначеного для руху по поганих дорогах (у возів; наприклад), колеса мають великий радіус. Сила тертя кочення Fтр.квиражається формулою
де P — сила нормального тиску, R — радіус тіла, що котиться µ — коефіцієнт тертя, який залежить від властивостей матеріалу дотичних поверхонь; як видно з формули, μ має розмірність довжини.
В природі тертя кочення зустрічається рідко. Можна тільки вказати на шарообразность насіння деяких рослин (горох, каштан, горіх), сприяючу відкатуванню цього насіння на більш далекі відстані від материнської рослини.
Сили тяжіння (гравітаційні сили)
Вивчаючи рух небесних тіл і падіння тіл в земних умовах, Ньютон встановив закон всесвітнього тяжіння, згідно якому матеріальні точки притягуються одна до одної з силою F, пропорційної їх масам m1 і m2 і обернено пропорційної квадрату відстані r між ними:
Закон справедливий також для випадків взаємодії куль і взаємодії великої кулі з малим тілом. При цьому під г слід розуміти відстань між центрами кульок. Коефіцієнт γ = 6,67. 10-11м3/(кг.сек2) був визначений експериментально і названий гравітаційною постійною. Згідно формулі (6), гравітаційна постійна рівна вираженою в ньютонах силі тяжіння міждвома точковими масами в1 кг кожна, що знаходяться на відстані 1 м один від одного.
З формули (6) виходить, що сили тяжіння величезні для небесних тіл і нікчемні для молекул, атомів і інших елементарних частинок. Так, сила тяжіння між Землею і Місяцем має порядок 1020н, а між двома майже дотичними (r = 3. 10-8см)молекулами кисню — порядок 10-32н.