Смекни!
smekni.com

Силовое оборудование здания для доращивания молодняка крупного рогатого скота на 720 голов (стр. 2 из 3)

Сущность метода заключается в определении числа эффективных электрических приемников.

Эффективное число электроприемников, nэ – такое число однородных по режиму работы электроприемников одинаковой мощности, которое обуславливает те же значения расчетной нагрузки, что и группа различных по мощности электроприемников.

Величину nэ находят следующим образом:

(2.5)

где Pн – номинальная мощность электроприемника, кВт;

n – число электроприемников, шт.

Последовательность расчета:

1. Приемники группируем по характерным категориям, согласно их расположению и распределительному пункту, к которому они относятся.

2. В таблицу, установленной формы заносим номинальные данные всех электроприемников (номинальная мощность, коэффициент мощности, коэффициент использования).

3. По формуле (2.5) рассчитываем nэ.

4. По следующим формулам определяем активную, Pр, реактивную Qp и полную Sp расчетные мощности:


(2.6)

(2.7)

(2.8)

5. По следующей формуле определяем расчетный ток Ip:

(2.9)

После составления таблицы расчета электрических нагрузок требуется определить мощность на вводе в здание, для этого воспользуемся методом коэффициента одновременности.

Сущность метода заключается в использовании зависимости Рр от числа потребителей, их мощности и вариации суммарной нагрузки от времени включения отдельных потребителей:

(2.10)

гдеPм – максимальная нагрузка определенных групп потребителей, кВт;

Kо – коэффициент одновременности, определяется по справочным данным [2].

Затем требуется определить общий коэффициент мощности электрооборудования в здании. Для этого воспользуемся формулой средневзвешенного коэффициента мощности:

(2.11)

гдеcosjср.вз. – средневзвешенный коэффициент мощности;

Pi – мощность i-го электроприемника, кВт;

cosji –коэффициент мощности i-го электроприемника;

В итоге получаем:

- Расчетная мощность на вводе:

- Общий коэффициент мощности :

- Полная мощность:


Таблица 2.1Расчет электрических нагрузок.

Исходные данные Расчетные величины Эффек. число ЭП,nэ Коэфф. расч. нагр.,Кр Расчетные мощности Расч.ток,Iр,А
По заданию По справочнику
Наименование электроприемников Кол-во ЭП, шт одн.ЭПPн общ.ЭПSPн Коэфф. исп. Ки Коэфф. мощн.cosj Kи.Pн Kи.Pн. .tgj n.Pн2 Акт.Pр,кВт Реакт.Qр,квар Полн.Sр,кВА
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
РП1:
Вентиляционные башни 12 0,55 6,6 0,65 0,80 4,29 3,22 3,63
Всего: 12 6,6 0,65 4,29 3,22 3,63 12 1,16 4,98 3,54 6,11 9,28
РП2:
Вентиляционные башни 12 0,55 6,6 0,65 0,80 4,29 3,22 3,63
Всего: 12 6,6 0,65 4,29 3,22 3,63 12 1,16 4,98 3,54 6,11 9,28
РП3:
Приточные установки 2 5,50 11,00 0,65 0,80 7,15 5,36 60,50
Вытяжные установки 2 5,50 11,00 0,65 0,80 7,15 5,36 60,50
Установка скреперная 2 2,20 4,40 0,6 0,70 2,64 2,69 9,68
Всего: 6 26,40 0,63 16,94 13,41 130,68 5,34 1,39 23,55 14,75 27,79 42,22
Освещение 7,69 7,69
Итого: 30 41,20 21,83 40,01 60,79

5. Расчет сечений проводов и кабелей

Задачей расчет электропроводок является выбор сечений проводников. При этом сечения проводников любого назначения должны быть наименьшими и удовлетворять следующим требованиям:

а) допустимому нагреву;

б) электрической защиты отдельных участков сети;

в) допустимым потерям напряжения;

г) механической прочности.

В отношении механической прочности выбор сечений сводится к просто выполнению нормативных требований ГОСТ30331.1-15. В нем приведены минимальные сечения проводников, которые могут быть использованы при выборе электропроводок в здании.

В нашем случае для стационарных электроустановок кабели и провода для силовых и осветительных сетей должны иметь сечение не менее 2,5 мм2 (Al).

Последовательность расчета:

1. Так как выбор сечения проводников связан непосредственно с выбором защитных аппаратов, то предварительно мы должны выбрать аппараты управления и защиты и рассчитать их характеристики.

2. Определить значение расчетного тока проводника. При этом необходимо обеспечить выполнение двух условий:

а) нагрев проводника не должен превышать допустимый по нормативным значениям:

(2.12)

гдеIдл – длительный расчетный ток электроприемника или участка сети, А;

Kп –поправочный коэффициент, учитывающий условия прокладки проводов и кабелей, Kп =1 [1];

б) при возникновении ненормальных режимов и протекании сверхтоков проводник должен быть отключен от сети защитным аппаратом:

(2.12)

гдеIзащ. – ток защиты аппарата, А;

Kзащ. – коэффициент кратности, характеризующий отношение между допустимым током проводника и током защиты аппарата, Kзащ=1 ([1] Таблица 5.6);

3. По таблице выбираем сечение кабеля.

В вышеизложенной последовательности рассчитаем сечения проводов для РП1. Расчеты сведем в таблицу 2.2.

Таблица 2.2 Расчет сечений проводов и кабелей.

Электроприемник Iдл.,А Iзащ.,А Марка кабеля Сечение Iпр.расч., А Рн,кВт
Вентиляционные башниКПС 103.21.08.00. 0,83 1,25 АВВГ 5x2,5 19 0,55
Приточные установки 8,36 10 АВВГ 5x2,5 19 5,5
Вытяжные установки 8,36 10 АВВГ 5x2,5 19 5,5
Установка скреперная 3,34 4 АВВГ 5x2,5 19 2,2
Щиток освещения 11,68 12,5 АВВГ 5x2,5 19 7,69

В связи с непротяженностью линии и практически полным отсутствием индуктивного сопротивления в линии, проверку выбранного сечения проводника по допустимой потере считаю нецелесообразной.

6. Выбор типов электропроводок. Обоснование конструктивного исполнения электропроводок здания

При проектировании сельскохозяйственных объектов следует применять следующие способы прокладки электропроводок:

- на тросе;

- на лотках;

- в коробах;

- в пластмассовых и стальных трубах;

- в металлических и резинотехнических гибких рукавах;

- в каналах строительных конструкций.

Учитывая условия среды и строительные особенности нашего здания, а также экономическую целесообразность выбираем открытую электропроводку, основной способ прокладки – на тросах.

Электропроводку для электродвигателей от магнитных пускателей выполним в полиэтиленовых трубах, так как проводка должна защищаться на высоте до двух метров.

Всю электропроводку выполняем пятижильным кабелем типа АВВГ.

7. Разработка схемы принципиальной электрической управления

7.1 Анализ технологического процесса

Технологический процесс уборки навоза осуществляется двумя скреперными установками УС-250. Навоз продавливается через решетчатый пол в подпольные каналы, перемещается в поперечные каналы со скребковым транспортером ТСМ-205. Продолжительность работы скреперных установок УС-250 составляет 4 раза в сутки по 15 минут (работает только две скреперные установки одного здания на поперечный транспортер). Транспортер ТСМ-205 навоз перемещает в помещение станции перекачки к приемной воронке установки УТМ-10, с помощью которой навоз под давлением подается на бетонную площадку, с которой периодически вывозится.

7.2 Разработка схемы и выбор элементов схемы

Уборка навоза будет осуществляться двумя скреперными установками, которые будут иметь автоматический выключатель для защиты от ненормальных режимов работы и магнитные пускатели с тепловыми реле для осуществления пуска и остановки. Включение магнитных пускателей будет производиться суточным реле времени 2РВМ. Отключение магнитных пускателей происходит по срабатыванию реле времени ВП-72-3221, производящего отсчет пятнадцатиминутного интервала.

Схему управления защищает от ненормальных режимов предохранитель.

В таблице 2.3 дан перечень элементов схемы.

Таблица 2.3 Перечень элементов схемы.

Поз. Обозначение Наименование Тип Кол. Техн.хар-ка Примеч.
1 QF1 Автоматический выключатель АЕ-2043 1
2 KM1 Пускатель магнитный ПМЛ-121002 1
3 KM2 Пускатель магнитный ПМЛ-121002 1
4 KK1 Реле тепловое ТРЛ-10 1 Iуст = 4А
5 KK2 Реле тепловое ТРЛ-10 1 Iуст = 4А
6 FU1 Предохранитель ПРС-6П 1
7 SB Кнопка управления КЕО-11 1
8 KT1 Реле времени 2РВМ 1
9 KT1 Реле времени ВП-72-3221 1

7.3 Описание работы принципиальной схемы управления