Смекни!
smekni.com

Синхронные машины. Машины постоянного тока (стр. 11 из 42)

Выпадение из синхронизма является аварийным режимом, так как оно сопровождается протеканием по обмотке якоря больших токов. Это объясняется тем, что э.д. с. генератора Е и напряжение сети Ucпри указанном режиме могут складываться по контуру «генератор–сеть», а не вычитаться, как при нормальной работе.

Если внешний момент по какой-либо причине снижается, то при работе машины в точке С угол θ уменьшается, возрастает электромагнитный момент, что приводит к дальнейшему уменьшению угла θ и переходу к работе в устойчивой точке А.

Из рассмотрения рис. 1.37, а следует, что синхронная машина работает устойчиво, если dM/> 0, и неустойчиво, если dM/< 0; чем меньше угол θ, тем более устойчиво работает машина.

Если машина работает в установившемся режиме при некотором угле θ, то малое отклонение Δθ от этого угла сопровождается возникновением момента ΔM= (dM/dθ)Δθ, который стремится восстановить исходный угол θ. Этот момент называют синхронизирующим. Ему соответствует понятие синхронизирующей мощности ΔPэм = (dPэм/dθ)Δθ.

Производные dM/и dPэм/называют соответственно коэффициентами синхронизирующего момента и синхронизирующей мощности (иногда их называют удельным синхронизирующим моментом и удельной синхронизирующей мощностью). При неявнополюсной машине

;
.

Коэффициент синхронизирующего момента имеет максимальное значение при θ = 0 и уменьшается с возрастанием θ; при θ ≈π/2 он обращается в нуль, поэтому синхронные машины обычно работают с θ = 20÷35°, что соответствует двукратному или несколько большему запасу по моменту.

Статическая перегружаемость синхронной машины оценивается отношением

. (1.37)

Согласно ГОСТу это отношение для турбогенераторов и гидрогенераторов должно быть не менее 1,6–1,7, а для синхронных двигателей большой и средней мощности – не менее 1,65.

Коэффициент синхронизирующего момента имеет максимальное значение при θ = 0 и уменьшается с возрастанием θ; при θ ≈ π/2 он обращается в нуль, поэтому синхронные машины обычно работают с θ = 20 ÷ 35°, что соответствует двукратному или несколько большему запасу по моменту.

Статическая перегружаемость синхронной машины оценивается отношением

Согласно ГОСТу это отношение для турбогенераторов и гидрогенераторов должно быть не менее 1,6 – 1,7, а для синхронных двигателей большой и средней мощности – не менее 1,65.

Влияние тока возбуждения на устойчивость. Устойчивость генератора при заданной величине активной мощности, отдаваемой в сеть, зависит от тока возбуждения. При увеличении тока возбуждения возрастает э.д.с. Е0и, следовательно, момент Ммакс; при этом увеличивается устойчивость машины.

На рис. 1.37, б изображены угловые характеристики М = f(θ) при различных токах возбуждения (при различных Е0), откуда следует, что чем больше ток возбуждения, тем меньше угол θ при заданной нагрузке, а следовательно, тем больше отношение Ммаксном и перегрузочная способность генератора.

Обычно электрическая сеть, на которую работают синхронные генераторы, создает для них активно-индуктивную нагрузку (генераторы отдают как активную Р, так и реактивную Q мощности). При этом синхронные генераторы должны работать с некоторым перевозбуждением, обеспечивающим повышение перегрузочной способности. Так, например, согласно ГОСТ в синхронных генераторах при номинальном режиме ток İaдолжен опережать напряжение сети Ùс(т.е. отставать от напряжения Ù) и иметь cosφ = 0,8. Однако если сеть создает активно-емкостную нагрузку (например, при подключении к ней большого числа статических или вращающихся компенсаторов), то генератор для поддержания стабильного напряжения должен будет работать с недовозбуждением, т.е. потреблять реактивную мощность. Такой режим будет для него весьма неблагоприятным, так как при уменьшении тока возбуждения и заданной активной мощности Р возрастает угол θ и снижается перегрузочная способность Ммаксном, определяющая статическую устойчивость машины.

Реактивная мощность. Для установления зависимости реактивной мощности Qот угла нагрузки θ в неявнополюсной машине рассмотрим треугольник ОАВ (см. рис. 1.34, а). Сторона этого треугольника

или с учетом модулей соответствующих векторов

. (1.38)

Следовательно, реактивная мощность машины


. (1.39а)

При явнополюсной машине (см. рис. 1.34, б)

. (1.39б)

Подставляя в (1.39б) значения токов Idи Iqиз (1.34), имеем

.

Заменив cos2θ и sin2θ их значениями через функции двойного угла 2θ, получим

. (1.39в)

На рис. 1.38 показаны зависимости величин активной Р и реактивной Q мощностей от угла θ для неявнополюсной машины в пределах изменения угла – π/2 < θ < π/2.

В формуле (1.39в) и на рис. 1.38 положительному значению реактивной мощности соответствует режим, когда реактивная составляющая тока якоря отстает от вектора напряжения генератора, т.е. когда машина работает с перевозбуждением. В этом режиме по отношению к сети реактивная мощность генератора эквивалентна реактивной мощности конденсатора.

Максимальная реактивная мощность неявнополюсной машины соответствует θ = 0, т.е. имеет место при холостом ходе машины:


. (1.40)

Рис. 1.38–Зависимости мощностей Р и Qот угла нагрузки θдля неявнополюсной машины

1.11 Режимы работы синхронного генераторапри параллельном включении с сетью

Изменение активной и реактивной мощностей синхронного генератора, работающего параллельно с сетью большой мощности, происходит при изменении внешнего момента и тока возбуждения.

Для того чтобы обеспечить требуемый режим работы генератора, обычно одновременно регулируется и ток возбуждения, и вращающий момент.

Методически проще разобрать два предельных случая регулирования:

а) момента при неизменном токе возбуждения;

б) тока возбуждения при неизменном внешнем моменте.

Работа генератора с неизменным током возбуждения при различных значениях момента. Для генератора с неявно выраженными полюсами векторную диаграмму (рис. 1.39, а) строят по уравнению

.

На векторной диаграмме показан вектор напряжения сети Ùс, который по контуру обмотки генератора имеет направление, встречное к вектору напряжения генератора, т.е. Ù = – Ùс.

Если генератор работает с cosφ = 1, то вектор тока якоря İa1 совпадает по направлению с вектором напряжения Ù, а вектор э. д. с. Ė02опережает эти векторы на угол θ1. При изменении нагрузки, например при ее возрастании, угол θ должен увеличиться до какого-то значения θ2 в соответствии с возрастанием мощности от PIдо РII.

Принимая полезную мощность (отдаваемую в сеть) равной электромагнитной

для соотношения мощностей РI и РII получим

.

Таким образом, при увеличении мощности с РIдо РIIвектор э. д. с. Ė0повернется в сторону опережения и образует с вектором Ù угол θ2. Легко заметить, что при изменении нагрузки конец вектора Ė0 будет скользить по окружности, радиус которой равен модулю Е0, так как ток возбуждения остается неизменным.

Соединив конец вектора Ù с концом вектора Ė01, получим вектор a2xсн, после чего построим вектор тока İа2; он будет перпендикулярен падению напряжения a2xсн, а его модуль определится из соотношения

.

Если момент, приложенный к валу генератора, уменьшен посравнению с моментом в исходном режиме, то новый угол θ, будет меньше угла θ1. Построение всех векторов (рис. 1.39, а)на диаграмме и в этом случае производится аналогично описанному в предшествующем примере.