Смекни!
smekni.com

Синхронные машины. Машины постоянного тока (стр. 39 из 42)


Рис. 2.72 – Скоростные и механические характеристики двигателей

с параллельным (независимым) (а) и последовательным (б) возбуждением при регулировании частоты вращения путем изменения напряжения на зажимах якоря

Рассмотренный метод регулирования весьма прост и экономичен, поэтому его широко применяют на практике. Однако регулирование частоты вращения этим методом можно осуществить только в сравнительно небольшом диапазоне; обычно nмакс/nмин= 2 ÷ З. Нижний предел nмин ограничивается насыщением магнитной цепи машины, которое не позволяет увеличивать в значительной степени магнитный поток. Верхний предел nмакс определяется условиями устойчивости (при сильном уменьшении Ф двигатель идет в «разнос»), а также тем, что при глубоком ослаблении возбуждения резко увеличивается искажающее действие реакции якоря и растет реактивная э.д.с, что повышает опасность возникновения искрения на коллекторе и появления кругового огня. По этой причине двигатели, предназначенные для работы в режимах глубокого ослабления возбуждения, должны иметь компенсационную обмотку и пониженную величину реактивной э. д. с. при номинальном режиме.

Изменение напряжения на зажимах якоря. При различных напряжениях на зажимах якоря U1и U2частоты вращения будут соответственно определяться формулами:


;

.

В двигателе с параллельным возбуждением частота вращения холостого хода изменяется пропорционально изменению напряжения:

, (2.96)

а падение частоты вращения при одинаковой нагрузке остается неизменным:

. (2.97)

В связи с этим скоростные характеристики n = f(Ia) двигателя с параллельным возбуждением представляют собой семейство параллельных прямых 1, 2 и 3 (рис. 2.72, а).

Механические характеристики n = f(M) получаются из скоростных простым изменением масштаба по оси абсцисс, так как момент пропорционален току якоря.

Скоростные и механические характеристики двигателя с последовательным возбуждением в основном строятся аналогично (рис. 2.72, б).

Регулирование частоты вращения двигателя путем изменения напряжения на зажимах якоря обычно ведут «вниз», т.е. уменьшают напряжение и частоту вращения по сравнению с номинальными.

2.13 Работа электродвигателей постоянного тока в тормозных режимах

Электрические двигатели, как правило, используют не только для вращения механизмов, но и для их торможения. Торможение необходимо в том случае, если нужно быстро остановить механизм или быстро уменьшить его частоту вращения. Применение механических тормозов для этих целей затруднительно из-за нестабильности их характеристик, малого быстродействия и трудностей автоматизации.

Различают три вида тормозных режимов двигателей постоянного тока:

1) генераторное торможение с отдачей электрической энергии в сеть (рекуперативное торможение);

2) генераторное торможение с гашением выработанной энергии в реостате, подключенном к обмотке якоря (реостатное, или динамическое, торможение);

3) электромагнитное торможение (торможение противоключением).

Во всех указанных режимах электромагнитный момент М воздействует на якорь в направлении, противоположном n, т.е. является тормозным. Рассмотрим более подробно эти режимы.

Рекуперативное торможение. Двигатель с параллельным возбуждением переходит в режим рекуперативного торможения при увеличении его частоты вращения n свыше частоты вращения n0 = U/сеФ. В этом случае э. д. с. машины становится больше напряжения сети и ток меняет свое направление:

, (2.98)

т.е. двигатель переходит в генераторный режим, создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть полезно использована.

Переход машины с параллельным возбуждением из двигательного режима в генераторный может происходить автоматически, если под действием внешнего момента якорь будет вращаться с частотой, большей частоты вращения холостого хода: n > n0. Можно перевести машину в генераторный режим и принудительно, уменьшив частоту вращения n0за счет увеличения магнитного потока (тока возбуждения) или снижения напряжения, подводимого к двигателю. Механические характеристики в генераторном режиме являются продолжением механических характеристик, имеющих место в двигательном режиме, в область отрицательных моментов (рис. 2.73).

Двигатели с последовательным возбуждением не могут автоматически переходить в режим рекуперативного торможения. В случае необходимости иметь рекуперативное торможение схему двигателей в тормозном режиме изменяют, превращая двигатели в генераторы с независимым возбуждением. Двигатели со смешанным возбуждением могут автоматически переходить в генераторный режим, что обусловило их применение в троллейбусах, трамваях и т.п., где имеются частые остановки, а двигатель должен обладать «мягкой» механической характеристикой.

Рис. 2.73 – Механические характеристики двигателя с параллельным возбуждением в двигательном и генераторном режимах

Рис. 2.74 – Схема включения двигателя с параллельным возбуждением в режиме динамического торможения; механические характеристики двигателей с параллельным и последовательным возбуждением в этом режиме

Динамическое торможение. При динамическом (реостатном) торможении двигателя с параллельным возбуждением обмотку якоря отключают от сети и к ней присоединяют реостат rдоб (рис. 2.74, а). При этом машина работает генератором и создает тормозной момент. Однако выработанная электрическая энергия гасится в реостате. Регулирование тока якоря Iа = Е/(∑r + rдоб) и тормозного момента М при этом способе торможения осуществляется путем изменения сопротивления rдоб, подключенного к обмотке якоря (рис. 2.74, б), или э.д.с. Е (воздействуя на ток возбуждения). При n = 0 тормозной момент равен нулю, следовательно, машина не может быть заторможена в неподвижном состоянии.

Рис. 2.75 – Схема включения двигателя с параллельным возбуждением в режиме электромагнитного торможения (а); механические характеристики двигателей с параллельным (б) и последовательным (в) возбуждением в этом режиме

Двигатель с последовательным возбуждением может работать в режиме динамического торможения, но при переводе его в этот режим нужно переключить провода, подводящие ток к обмотке возбуждения. Последнее необходимо для того, чтобы при изменении направления тока в якоре (при переходе с двигательного режима в генераторный) направление тока в обмотке возбуждения оставалось неизменным и создаваемая этой обмоткой м.д.с. Fвсовпадала по направлению с м. д. с. Fостот остаточного магнетизма. В противном случае генераторы с самовозбуждением размагничиваются. Механические характеристики для этого двигателя в тормозных режимах (рис. 2.74, в) нелинейны. Двигатель со смешанным возбуждением также может работать в режиме динамического торможения.

Электромагнитное торможение. Вэтом режиме изменяют направление электромагнитного момента М, сохраняя неизменным направление вращения, т.е. момент делают тормозным. Последнее осуществляют так же, как и при изменении направления вращения двигателя, путем переключения проводов, подводящих ток к обмотке якоря (рис. 2.75, а) или к обмотке возбуждения. Чтобы ограничить величину тока в этом режиме, в цепь обмотки якоря вводят добавочное сопротивление rдоб. Регулирование величины юка Ia = (U+ Е)/(∑r + rдоб), т.е. тормозного момента М, осуществляют изменением сопротивления rдоб (рис. 10–75, б, в) или э.д.с. Е (тока возбуждения Iв).

С энергетической точки зрения рассматриваемый способ торможения является самым невыгодным, так как машина потребляет как механическую, так и электрическую энергию, которые гасятся в обмотке якоря и во включенном в ее цепь реостате. Но при этом способе можно получать большие тормозные моменты при низких частотах вращения и даже при n –0, поскольку в этом случае ток Iа = U/∑r+ rдоб).

2.14 Современные способы регулирования частоты вращения электродвигателей постоянного тока

Описанные принципы регулирования частоты вращения в двигательном и тормозных режимах находят свою практическую реализацию в четырех основных способах регулирования:

1) реостатно-контакторное управление;

2) регулирование по системе «генератор–двигатель»;

3) регулирование по системе «управляемый выпрямитель–двигатель»;

4) импульсное регулирование.

Подробное исследование этих способов регулирования дается в курсах электропривода и теории автоматического регулирования. В этом разделе будут рассмотрены только основные положения, имеющие непосредственное отношение к теории электрических машин.

Реостатно-контакторное управление. В настоящее время это управление применяют весьма широко для регулирования частоты вращения двигателей малой и средней мощности, а иногда (на железнодорожном транспорте) и для регулирования мощных двигателей.