Смекни!
smekni.com

Система автоматичного регулювання (САР) турбіни атомної електростанції (стр. 13 из 22)

- «N» – ЕЧСР працює в режимі регулювання потужності;

- «P» – ЕЧСР працює в режимі регулювання тиску;

- «F» – ЕЧСР працює в режимі регулювання частоти обертання (на блоці N1 ХАЕС не використовується):

- «Н» – режим регулювання по положенню РК (на АЕС не використовується);

- ЗАБОРОНА «У» – заборона дії ЕЧСР на «зменшити»;

- ЗАБОРОНА «П» – заборона дії ЕЧСР на «додати»;

- «Iегп >= 50%» – струм у ЕГП перевищує 50% номінального значення і припустиму тривалість за часом;

- «Рмін» – працює регулятор мінімального тиску.

2.6 Робота ЕЧСР в різних режимах роботи енергоблоку

2.6.1 Режими роботи ЕЧСР

В залежності від режиму роботи енергоблоку оператор блокового щита керування (БЩУ) встановлює наступні режими роботи ЕЧСР:

I – режим дистанційного керування навантаженням турбіни при відключених контурах регулювання, які впливають на двигун МКТ. В цьому режимі ЕЧСР по командах «зменшити» чи «додати» забезпечує дистанційне керування двигуном МКТ. Команда «зменшити» означає що МКТ буде впливати на регулюючі клапана турбіни вбік їхнього закриття для зниження потужності турбіни.

II – режим автоматичного керування клапанами турбіни в процесі автоматичного пуску турбіни.

III – режим регулювання потужності і тиску пари перед турбіною чи положення регулювальних клапанів;

IV – режим дистанційного керування навантаженням турбіни при включеному захисному регуляторі тиску свіжої пари.

Переключення режимів виробляється спеціальним перемикачем, встановленому на блоковому щиті керування.

Перехід в режим I для взводу стопорних клапанів при пуску турбіни виробляється автоматично з режиму II – при цьому в ЕЧСР відключаються контури регулювання (з наступним їхнім включенням без контролю з боку оператора).

У всіх перерахованих режимах швидкодіючі канали нормально включені, тому що по цих каналах здійснюється протирозгінний захист турбіни

Переключення ЕЧСР з одного режиму в інший, а також включення в автоматичні режими II і III здійснюється під контролем оператора енергоблоку (після переводу перемикача БЩУ в положення, які відповідають режимам I і IV).

2.6.2 Робота ЕЧСР у нормальних режимах енергоблоку

У нормальних режимах енергоблоку ЕЧСР виконує функції турбінного регулятора блокової частини системи регулювання АРЧМ АЕС.

В аварійних і післяаварійних режимах енергосистеми в ЕЧСР працює також канал початкової корекції нерівномірності (ПКН), і, якщо спрацюють відповідні пускові органи, канали релейної форсировки (РФ), попереднього захисту (ПЗ) і диференциатора (ДИФ). Ці сигнали поліпшують динамічні характеристики системи регулювання турбіни і сприяють підвищенню динамічної стійкості турбоагрегату.

При аваріях на енергоблоці (різного роду ушкодженнях устаткування, що приводять до скидання потужності), відмовленні системи регулювання надходження пари в циліндри турбіни в аварійних умовах через нещільності клапанів свіжої пари, промперегріву, коли може значно збільшитися частота обертання ротора турбіни, ЕЧСР забезпечує протирозгінний захист турбіни по каналах релейної форсировки, диференциатора, попереднього захисту. Ці канали впливають на систему регулювання турбіни через ЕГП і електромагніти попереднього захисту і регулювальних клапанів.

2.7 Робота АСР при експерементальному відключенні енергоблоку від мережі

Суть даного експеременту полягає в перевірці роботи АСР у випадку спрацювання сигналу релейної форсировки (або автоматичного від’єднання енергоблоку від мережі).

РФ включається в роботу по сигналу спрацьовування захистів на відключення генератора, по сигналу відключення генератора від мережі або відключеному положенню вимикачів 330 кв.

При роботі РФ ШКУ ЕЧСР видає на ЕГП керуючий сигнал на закриття РК турбіни. Сигнал має форму імпульсу з експонентним заднім фронтомдив. мал. 2.3.

Амплітуда імпульсу з максимальною величиною струму ЕГП 4 нв забезпечує максимальну швидкість переміщення РК на закриття, а постійна часу загасання вибирається таким чином, щоб забезпечити кращу якість переходу до сталого режиму.

Дія РФ однократна. Параметри імпульсу РФ (А0, Т, Т0) повинні задаватися за допомогою ЕОМ.

Рис. 2.3. Імпульс релейної форсировки

Задачею АСР в такому випадку було:

1. не допустити зростання частоти обертання вала турбіни.

2. швидко знизити потужність енергоблоку до рівня власних витрат.

Результатом даного експеременту є графічна залежність (рис 2.4) РИ.

З даної графічної залежності видно, що де-який час значення таких

параметрів, як частота обертання вала турбіни (F), потужність генератора (Nел) та струм ЕГП (Іегп) знаходились в межах, що відповідають нормальному режиму роботи енергоблока і були сталими:

F=3000 об/хв;

Nел=980 МВт;

Іегп=0 мА;

Рис. 2.4. Перехідні процеси в системі, при зниженні потужності енергоблоку до рівня власних потреб

При від’єднанні енергоблоку від мережі в момент часу t=8.5c, спостерігається швидке зростання частоти обертання вала турбіни F=3171 об/хв, що, відповідно до норм експлуатації турбіни є не бажаним процесом для її роботи.

В цьому випадку ЕЧСР видає електричний сигнал рівний –946 мА на вхід ЕГП, що приводить до швидкого прикриття регулюючих клапанів турбіни та поступового зменшення частоти обертання вала турбіни.

Рівень власних потреб станції складає від 30 до 65 мВт, в даному випадку АСР намагається тримати це значення на рівні 35 мВт.

Висновки: Процес регулювання роботи турбіни є досить складним.

Від якості регулювання напряму залежить КПД енергоблоку. Використання систем автоматичного регулювання дозволяє достатньо легко здійснювати цей процес.

Відповідно до правил технічної експлуатації електричних станцій і мереж одним з основних техніко-економічних показників електричної станції є кількість виробленої електроенергії і відпущеного тепла.

Кількість виробленої електроенергії прямо залежить від електричної потужності турбіни. ЕЧСР, будучи регулятором турбіни регулює рівень електричної потужності, з чого випливає що від стабільної роботи ЕЧСР залежить кількість виробленої електричної енергії та безпека енергоблоку.

3. Функціональна будова ЕЧСР

ЕЧСР функціонально ділиться на два основних контура автоматичного управління:

· ПКУ (повільнодіючий контур управління);

· ШКУ (швидкодіючий контур управління);

Крім ПКУ та ШКУ в склад ЕЧСР входить схема ДУ (дистанційного управління), яка функціонує незалежно від автоматичних контурів управління.

3.1 Робота швидкодіючого контуру керування турбіною

В даному каналі керування формується вплив на ЕГП з метою забезпечення протирозгінного захисту турбіни, підвищення її приємистості, та роботи енергоблоку в аварійних і післяаварійних режимах роботи енергосистеми.

Керування ЕГП здійснюється через вихідний аналоговий підсилювач потужності ЕЧСР, на вхід якого подається сума впливів, сформованих по наступним функціональним каналам:

- релейної форсировки (РФ);

- диференціатора (ДИФ);

- корекції початкової нерівномірності (ПКН);

- швидкодіючого післяаварійного керування потужністю (ПАУ);

- попереднього захисту (ПЗ);

- імпульсного розвантаження в аварійних режимах роботи енергоблоку (АІР).

Крім того можна виділити канал вимірювання потужності генератора і канал всережимного вимірювання частоти обертання валу турбіни з видачею аналогового і ряду дискретних сигналів.

Канал релейної форсировки (РФ) призначений для подачі в систему регулювання сигналу, що форсує, на закриття регулювальних клапанів при відключенні генератора від мережі. Подача імпульсу виробляється від блок-контактів вимикачів генератора і від релейного захисту, що діє на відключення вимикачів генератора.

Канал диференціатора(ДИФ) призначений для подачі сигналу, що закриває регулюючі клапана турбіни з появою позитивного кутового прискорення ротора, яке свідчить про велике миттєве скидання навантаження генератора.

Диференціатор включається в роботу при підвищенні частоти обертання вище 103% wном і наявності прискорення обертання ротора турбіни.

Диференціатор забезпечує протирозгынний захист турбіни видачею на ЕГП керуючого сигналу, пропорційного прискоренню ротора турбіни:

Iдиф. = K (dw/dt – Уст dw/dt),

де dw/dt – прискорення ротора турбіни;

Уст dw/dt – уставка спрацьовування;

К – коефіцієнт підсилення.

Датчиком служить електричний датчик частоти обертання ротора. Сигнал датчика перетвориться в диференціаторі і функціональному перетворювачі. Наявна можливість зміни коефіцієнта підсилення по прискоренню ротора (крутості характеристики) і величини прискорення, при якій диференціатор вступає в роботу.

Канал корекції початкової нерівномірності(ПКН) призначений для поліпшення приємистості турбіни з метою компенсації шкідливого впливу на приємистість великої кількості пари, акумульованої в промперегріві.

Вихідний сигнал каналу ПКН утворюється різницею сигналів від датчика електричної потужності і датчика тиску пари в промперегріві.

Знаки сигналів від датчиків обрані таким чином, щоб збільшення потужності приводило до відкриття регулювальних клапанів свіжої пари, а збільшення тиску приводило до закриття цих клапанів.

При зміні споживання потужності в енергосистемі регулювання турбіною здійснює перестановку регулювальних клапанів в положення, при якому потужність турбіни відповідає новій споживаній потужності.

Однак потужність турбіни при зміні частоти буде швидко мінятися на величину потужності ЦВТ, а потужність ЦНТ через наявність великого об’єму промперегріву буде мінятися повільно в міру зміни тиску в промперегріві, тобто початкова нерівномірність регулювання (нерівномірність, коли тиск у промперегріві можна вважати практично постійним) буде велика. Для зменшення початкової нерівномірності при зміні потужності генератора в каналі ПКН виробляється сигнал вбік привідкриття чи призакриття регулювальних клапанів ЦВТ таким чином, щоб зміною потужності ЦВТ короткочасно компенсувати відставання в зміні потужності ЦНТ. З наступною зміною тиску в промперегріві (що свідчить про зміну потужності, яка виробляється в ЦНТ), сигнал каналу ПКН буде зменшуватися й у статиці дорівнюватиме нулю.