Перелік умовних позначень, скорочень і термінів
АЕС – атомна електрична станція
АІР – імпульс автоматичного розвантаження
АКЗ - активна зона реактора
АЦП – аналогово-цифровий перетворювач
БПН – блок постійної напруги
БЩУ - блочний щит управління
ВВЕР – водо-водяний енергетичний реактор
ВП – вимірювач потужності
ГЦК - головний циркуляційний контур
ГЦН – головний циркуляційний насос
ГЧСР – гідравлічна частина системи регулювання
ДИФ – канал диференціатора
ДКТ – датчик керуючого тиску
ЕВ – електромагнітний вимикач
ЕГП – електрогідравлічний перетворювач
ЕОМ – електронна обчислювальна машина
ЕЧСР – електрична частина системи регулювання
КРТ – контур регулювання тиску
КРЧО – контур регулювання частоти обертання
КТ – Компенсатор об’єму
МЕО – механізм електричний однообертовий
МКТ – механізм керування турбіною
НВТ – насос високого тиску
ННТ - насос низького тиску
ОЗП – оперативний запам’ятовуючий пристрій
ОП – обмежувач потужності
ОТЗ – обмежувач темпу задання
ПА – протиаварійна автоматика
ПАУ – канал післяаварійного управління
ПHТ – підігрівник низького тиску
ПГ - парогенератор
ПЗ – протиаварїйний захист
ПЗО – пристрій зв’язку з об’єктом
ПКН – канал початкової нерівномірності
ПР – перемикч вибору сигналів
РБ – регулятор безпеки
РК – регулюючий клапан(турбіни)
РПТ – регулятор потужності тиску
РФ – релейна форсировки
САК – субблок аналогового перетворювача
САР – система автоматичного регулювання
САОЗ – система аварійного охолодження активної зони реактора
СВП – субблок вихідного підсилювача
СВС – субблок вихідного сигналу
СІ – субблок індикації
СКР – субблок комутації реле
СКС – система контролю сигналів
СН – стабілізатор напруги
СП – субблок перемикачів
СПП-сепаратор пароперегрівник
СПЧ – субблок перетворення частоти
СТП – субблок токового перетворювача
СУЗ - система управління та захисту
ТА – технологічна автоматика
ТВЕЛ – тепловиділяючий елемент
ТГ – турбогенератор
ТГІ – тахогенератор індукційний
УКП – канал прогріву турбіни
ЦАП – цифро-аналоговий перетворювач
ЦВТ - циліндр високого тиску
ЦНТ – циліндр низького тиску
ЯЕУ – ядерна енергетична установка
ЯПУУ – ядерна пароутворююча установка
Атомна енергія відноситься до довгострокових і відносно дешевих видів енергії. І те й інше вкрай важливо для сучасної цивілізації, яка вже зараз відчуває нестачу в енергетичних ресурсах, що, в свою чергу, відбивається на зростанні вартості енергії. Проте, освоєння атомної енергії і розвиток ядерної енергетики зустрічають протидію з боку світової громадськості, що стурбована проблемами ядерної безпеки, можливістю забруднення навколишнього середовища радіоактивними відходами і небезпекою поширення ядерної зброї.
У зв'язку з паливоенергетичною кризою, широкій громадськості було переконливо показано, як важлива енергія для забезпечення нормальної життєдіяльності людини. Стало очевидним, що доступних для використання джерел нафти і газу при існуючих масштабах споживання може вистачити лише на кілька десятиліть. Тому в даний час усе більш зростає увага до пошуків альтернативних енергетичних ресурсів і дослідженням у цій області. Людству необхідно навчитися жити в умовах енергетичних запасів, що змінюються, і зростаючих труднощів, включаючи технічні проблеми, ріст цін, необхідність значних і довгострокових капіталовкладень, незалежно від політичного устрою суспільства.
Використання енергії ядер, що поділяються – одна з найважливіших альтернатив традиційної теплоенергетики, особливо для країн з убогими ресурсами палива. В даний час економічно вигідніше виробляти електроенергію на великих АЕС, ніж на традиційних електростанціях, за винятком деяких районів зі сприятливими умовами для використання гідроенергії чи з великими запасами кам'яного вугілля. Атомна енергія поряд з використанням в електроенергетиці може бути застосована на морському транспорті, у комунально-побутовому і промисловому секторах у виді теплоти й інших енергоємних виробництв.
Розвиток ядерної енергетики завжди асоціюється з потенційною небезпекою радіоактивного зараження біосфери. Ця унікальна особливість ядерної енергетики, невідома в інших областях людської діяльності, викликає серйозне побоювання громадськості. Дійсно такий ризик існує і в основному через значну концентрацію радіоактивних матеріалів в активних зонах реакторів, частина яких, у принципі, може виділитися в результаті аварії, диверсії чи війни. Існує також ризик витоку радіоактивних продуктів при видобутку уранових руд, на переробних заводах і інших підприємствах, зв'язаних з обробкою і збереженням радіоактивних матеріалів.
Для захисту населення та обслуговуючого персоналу АЕС і інших підприємств ядерної енергетики від радіаційного ураження розроблені норми і правила забезпечення безпеки при проектуванні й експлуатації потенційно небезпечних об'єктів, створені державні органи ліцензування й інспекції таких об'єктів, затверджені кваліфікаційні стандарти для персоналу, що несе відповідальність за безпечну експлуатацію АЕС і інших підприємств паливного циклу.
Безпечна, надійна й економічна експлуатація ядерного реактора на всьому протязі 30-літнього терміну служби була б неможлива без глибоких знань і досвіду фізиків, інженерів-механіків, електриків, хіміків без кваліфікованої роботи безлічі техніків і робітників, особливо зварників, електриків, будівельників. Виконання цієї умови в ядерній енергетиці привело до вражаючих результатів: забезпечило на сьогоднішній день рекордні показники по безпеці й економічності АЕС, що є надійною основою для широкомасштабного розвитку ядерної енергетики.
Сучасний етап розвитку енергетики характеризується прогресивною часткою АЕС, що збільшується у виробництві електроенергії. За короткий термін – близько 20 років атомна енергетика пройшла великий шлях від першої АЕС до блоків потужністю 1000–1500 Мвт і більш, ставши одним з найважливіших джерел енергії для багатьох країн і економічних районів. У процесі розробки, проектування й експлуатації АЕС накопичений великий досвід, у тому числі по створенню систем контролю і керування.
Безупинне зростання вимог до контролю і керування, викликане необхідністю підвищення безпеки і надійності АЕС, підвищенням одиничної потужності блоків, а також інтенсифікацією технологічних процесів, зажадало широкого застосування нових технічних засобів автоматизації – електронних обчислювальних машин, пристроїв логічного керування – перегляду принципів організації керування АЕС.
АЕС можуть споруджуватися в будь-якому географічному районі країни, але обов'язково при наявності джерела водопостачання. АЕС споруджуються по блоковому принципі, як у тепловий, так і в електричній частині.
Їх вигідно будувати з енергоблоками великої потужності, тоді по своїх техніко-економічних показниках вони не уступають КЕС, а в ряді випадків і перевершують їх.
В даний час на АЕС встановлюються енергоблоки потужністю 1000–1500 Мвт і уся вироблювана електроенергія (за винятком витрат на власні потреби) видається в енергосистему по лініях високої і понад високої напруги. Коефіцієнт корисної дії АЕС складає 35–38%, підвищити який дозволяє застосування мікропроцесорної електричної частини системи регулювання (ЕЧСР).
ЕЧСР є регулятором турбіни, що входить до складу системи автоматичного керування потужністю (САКП) енергоблоку. Призначена для керування РК турбіни у всіх режимах роботи блоку.
ЕЧСР призначена підвищити:
ступінь автоматизації роботи блоку в різних режимах його роботи;
стійкість роботи блоку в нормальних експлуатаційних умовах, а також
при відмовленнях і непланових відключеннях технологічного устаткування;
поліпшити динамічні характеристики турбіни енергоблоку.
У режимах зі скиданнями електричного навантаження задачею ЕЧСР є поліпшення протирозгонної характеристики турбіни.
Передбачено можливість використання ЕЧСР в:
режимах пуску (розворот турбіни, синхронізація ТГ із мережею, навантаження) і зупинки (розвантаження, зупинка турбіни);
нормальних режимах роботи енергоблоку при регулюванні заданого параметра;
при технологічних обмеженнях на блоці через непланові відключення допоміжного устаткування;
при скиданнях електричного навантаження.
Впливаючи на РК турбіни, ЕЧСР дозволяє виконати в залежності від режиму роботи блоку, регулювання наступних параметрів:
частоти обертання ротора турбоагрегату;
активної електричної потужності;
тиску свіжої пари в ЦПК;
тиску керуючої рідини при максимальному навантаженні ТГ.
Перший контур (малюнок. 1.1) складається з реактора (1) і чотирьох петель, кожна з який включає парогенератор (2), головний циркуляційний насос (3) і головні циркуляційні трубопроводи, Будова декількох паралельних петель виключає необхідність резервування устаткування, зокрема циркуляційних насосів. Число паралельних петель визначається максимально досяжною потужністю окремих елементів устаткування. Вода в реактор надходить при тиску 16,6 Мпа з температурою 562 К. В активній зоні реактора вона нагрівається до 595 К і направляється в парогенератор, де охолоджується, віддаючи теплоту теплоносію другого контуру. З парогенератора вода головним циркуляційним насосом повертається в реактор.
Передача теплоти в парогенераторі відбувається без фазових перетворень теплоносія першого контуру. Закипання теплоносія не відбувається за рахунок високого тиску в контурі. Для створення необхідного тиску потрібно спеціальне зовнішнє джерело, яким є паровий компенсатор тиску (КТ) (4). Він служить для компенсації зміни об’єму теплоносія при нагріванні його в контурі і створення початкового тиску.