Смекни!
smekni.com

Сквозные нанопористые структуры из оксида алюминия для информационных технологий мембранной биологии (стр. 2 из 2)

Из полученных результатов следует, что созданные матричные платформы на основе ПАОА могут быть использованы при измерении электрофизических свойств модельных мембран и нанокомпозитных структур на основе тонких ЛБ-пленок, поскольку, как видно из приведенных результатов, проводимость в области сквозной пористости соответствует параметрам проводимости замкнутых контактов, а в других областях матричной платформы- параметрам разомкнутых контактов измерительной системы.

а) б)

Рисунок 3 - АСМ-изображение фронтальной поверхности (1а), барьерного слоя (2а) и трехмерное АСМ-изображение фронтальной поверхности (б) сквозной области матричной платформы

Как показали многочисленные исследования последних лет, физико-химические свойства наноразмерных структур отличаются как от свойств отдельных атомов и молекул, так и от свойств массивных тел состоящих из огромного числа атомов или молекул. Установление закономерностей объединения атомов и молекул в нано-размерные кластеры, комплексы и агрегаты и умение контролировать условия такого объединения позволят сформировать большое количество новых наноструктур с наперед заданными свойствами.

Поиск методов получения новых материалов с наперед заданными свойствами требует знания процессов, происходящих внутри отдельных нано-размерных кластеров при изменении внешних, как физических так химических, условий. Проследить малейшие изменения в структуре таких ансамблей возможно оптическими методами, что делает актуальным изучение их оптических и спектроскопических свойств. Методами колебательной спектроскопии изучены процессы образования нанокластеров перхлоратных соединений шестивалентного урана с рядом органических лигандов (диметиформамид ДМФА, диметилсульфоксид ДМСО) при механохимическом активировании процессов лигандного обмена. Выбор указанных реагентов обусловлен с одной стороны тем фактом, что ион перхлората, как ацидолиганд, является одним из самых слабых лигандов и в процессе лигандного замещения можно будет создавать первую координационную сферу катиона состоящую только из нейтральных лигандов. С другой стороны, донорная способность DN (по Гутману) растворителей ДМФА (DN =26,6) и ДМСО (DN=29,8) значительно больше, чем у воды (DN=18), и они эффективно могут замещать молекулы воды.

Химическая формула перхлорат уранила имеет следущий вид UO2(ClO4)2×5H2O. Кристалл состоит из уранильной группы UO22+ и пяти молекул воды, входящих во внутреннюю координационную сферу, и двух ионов ClO4 во внешней координационной сфере. В катионе [UO2(OH2)5]2+ атом урана имеет пентоганально-бипирамидальную координацию. Средняя длина экваториальной связи U-O(воды) = 2,45 А , аксиальной U-O(уранила) = 1,71 А. Динамику замещения первой координационной сферы иона уранила анализировали на основании изменения положения полосы антисимметричного колебания уранильной группировки и если это было возможно изменения оптической плотности полосы деформационного колебания молекулы воды. ИК-спектры изучаемого вещества получали используя cпектрофотометр “SPECORD IR 75”. При приготовлении образцов компоненты смешивались в ступке в течение 45- 60 минут.

При замещении молекулы воды на молекулу нейтрального лиганда (ДМФА, ДМСО) происходит, вследствие большей донорной способности последнего, а следовательно и большего отрицательного заряда переносимого на уран, ослабевание связи U-O в уранильной группе, что в свою очередь приводит к уменьшению частоты антисимметричных колебаний этой группы. Чем больше молекул воды замещается, тем больше смещение этой полосы в область длинноволновых колебаний. Таки образом наблюдая за смещением, расщеплением и шириной данной полосы при увеличении концентрации нейтрального лиганда в образце, мы можем качественно описать комплексный состав изучаемого образца.

Из анализа ИК-спектров (см. таблицу 1) можно сделать заключение, что при смешивании перхлорат уранила с диметилсульфоксидом в соотношении 1:1, 1:2, .. , 1:6 образуются новые комплексы уранилперхлората с молекулами ДМСО в первой координационной сфере иона уранила, причем в зависимости от соотношения меняется концентрация этих комплексов. При концентрации ДМСО 1:1 и 1:2 спектральная полоса антисимметричных колебаний уранила к сожалению перекрывается с полосой поглощения ДМСО n = 940 см-1 . При соотношении 1:3 уже удается различить пик данной спектральной полосы nаs = 920 см-1 иона уранила, причем сама полоса довольно широкая. При этом же соотношении спектральная полоса антисимметричных колебаний группыCIO4 наиболее широкая, что подтверждает, как следует из вида nаs уранильной группы, наличие при данном соотношении наибольшего числа комплексов с относительно небольшой разбежкой в концентрациях. Происходит перекрытие данных полос, принадлежащих различным комплексам. При соотношении 1:4 происходит расщепление nаs(UO22+) на компоненты 950, 920 и 917 см-1 . При дальнейшем увеличении концентрации ДМСО остаётся только одна полоса nаs = 917 см-1 . Изменения оптической плотности полосы деформационного колебания воды в образцах уранилпехлората с различным содержанием ДМСО приведены в таблице 1.

Таблица

UO2(ClO4)2·5H2O: ДМСО D
1:1 0,949
1:2 0,859
1:3 0,280
1:4 0,098
1:5 0,007
1:6 0

Аналогичные изменения наблюдаются в спектрах ИК поглощения в системах UO2(ClO4)2×5H2O + nДМФА (см. таблицу 1). К сожалению, частичное перекрытие полосы валентных колебаний nc-o диметилформамида с полосой деформационных колебаний воды не дает, как в случае с ДМСО, такой наглядной картины падения оптической плотности последних при постепенном увеличении концентрации ДМФА. Однако дополнительные исследования полученных образцов в ИК области 2200-4000 см-1 показали уменьшение оптической плотности валентных колебаний воды с увеличением концентрации ДМФА, что так же подтверждает замещение молекул воды молекулами ДМФА.

Изменяя время механохимической активации, можно целенаправлено получать нанокластеры уранила с преимущественно однообразной, типа [UO2.(5-x) H2O.xS]2+ (где S – ДМФА или ДМСО) разнолигадной сферой. Причем, начиная с соотношения UO22+ к ДМСО =1:3 получаемый образец можно сохранять в твердом состоянии на открытом воздухе, то есть он становится устойчивым к воздействию атмосферной влаги.

Таким образом, полученные экспериментальные образцы и основы технологии их создания могут найти широкое применение для решения задач биосенсорики и мембранной биологии.


Список литературы

[1]. Pantoja, R., D. Sigg, R. Blunck, F., Bezanilla, and J.R. Heath. 2001. J. 81:2389-2394.

[2]. Woodbury, D.J. and C. Miller. 1990.Nystatin-induced liposome fusion. 58:833-839.

[3]. Wonderlin, W.F., A. Finkel, and R.J. French. 1990. 58:289-297.

[4]. Cho, S.J., M. Kelly, K.T. Rognlien, J.A. Cho, J.K. Horber, and B.P. Jena. 2002. 83:2522-2527.

[5]. Bayley, H. and P.S. Cremer. 2001. Nature 413:226- 230.

[6]. Mayer, M., J.K. Kriebel, M.T. Tosteson, and G.M. Whitesides. 2003. 85:2684-2695.

[7]. Fertig, N., C. Meyer, R.H. Blick, C.Trautmann, and J.C. Behrends. 2001. Phys. Rev. E. Stat. Nonlin.Soft. Matter Physiol. 64:040901.

[8]. Ide, T. and T. Ichikawa. 2005. Biosens. Bioelectron. 21:672-677.