К нижнему днищу приварены три опоры для установки фильтра на фундамент. Каждая камера фильтра снабжена двумя люками следующих размеров: диаметр 800 мм и 420 х 320 мм.
Люки предназначены для монтажа верхних и нижних распределительных устройств, загрузки фильтрующего материала, ревизии и ремонта распределительных устройств, а также для периодического осмотра состояния поверхности фильтрующего материала. Плоская перегородка, делящая корпус фильтра по высоте на камеры, скреплена анкерными связями с верхним эллиптическим днищем фильтра. Через анкерные связи, изготовленные из труб, воздух из нижней камеры отводится в верхнюю камеру.
В каждой камере имеются штуцера для крепления распределительных устройств к корпусу фильтра. Верхние дренажно-распределительное устройство предназначено для подвода в фильтр и равномерного распределения по площади поперечного сечения обрабатываемой воды, а также для удаления из фильтра взрыхляющей воды. Распределительное устройство состоит из вертикального коллектора, заглушенного снизу, и радиально расположенных перфорированных распределительных труб, вставленных в отверстие вертикального коллектора. Наружные концы распределитеных труб заглушены и прикреплены к корпусу фильтра. Распределительные трубы установлены отверстиями вверх.
Нижнее дренажно-распределетельное устройство предназначено для обеспечения равномерного сбора отработавшей воды, равномерного распределения по площади поперечного сечения взрыхляющей воды и сжатого воздуха. Оно состоит из вертикального коллектора с заглушенным верхним концом, четырех отводов, вставленных в радиально расположенное отверстие вертикального коллектора под углом к горизонтальной плоскости. Отводы крепятся к вертикальному коллектору с помощью сварки. От каждого отвода также под углом к горизонтальной плоскости отходят перфорированные распределительный трубы, по нижней образующей которых расположены отверстия диаметром 8 мм. Отверстие прикрывают приваренный щелевой желобок с шириной щели 0, 4 мм.
Конструкция фильтра предусматривает наличие слоя воды называемой водяной подушкой, над слоем фильтрующего материала. Водяная подушка необходима для того чтобы обеспечить равномерное распределение воды по площади сечения фильтра и сгладить отдельное потоки воды, выходящей из верхнего дренажно-распределительного устройства. Для отвода воздуха из фильтра при заполнения последнего водой предусмотрена труба (воздушник).
Корпус фильтра изготавливается из углеродистой стали, распределительное устройство из нержавеющей стали.
Вода, прошедшая предочистку, практически не содержит в себе грубодисперстных примесей в значительной степени освобождена от коллоидных. Однако основная часть примесей в истенно-растворенном состоянии остается в этой воде и должна быть удалена из нее. Для этого применяют ионный обмен.
Сущность ионного обмена заключается в использовании способности некоторых специальных материалов (ионитов) изменять в желаемом направлении ионный состав примесей воды. Технологически очистку воды методом ионного обмена осуществляют путем фильтрования воды через промышленные фильтры, загруженные ионитами. Для удаления из воды катионов применяют катиониты, находящиеся в Н+ – форме. Очистку воды от анионов производят с помощью анионов, находящихся в ОН- – форме.
Способность ионитов к ионному обмену объясняется их строением. Любой ионит состоит из твердой основы (матрицы), на которую тем или иным способом нанесены функциональные специальные группы, способные при помещении ионита в раствор к образованию на поверхности ионита потенциалообразующих ионитов, то есть к возникновению заряда.
Ионообменные материалы, имеющие широкое применение в технологии водоподготовки АЭС, представляют собой синтетические высокомолекулярные соединения кислого или основного характера. Материалы эти получают либо путем поликонденсации исходных мономеров, либо путем их сополимеризации. Обычно средний диаметр зерен ионитов колеблется от 0.3 до 2.0 мм.
Процесс очистки воды на катионите называют катионированием. При Н --катионировании происходит обмен всех катионов, находящихся в воде, на катион водорода, находящийся в катионите. Качество работы Н- – катионированного фильтра контролируют по кислотности или концентрации катиона Na+ в фильтрате. Фильтр отключают при появлении катионов Na+ в фильтрате в заданной концентрации. Процесс очистки воды на анионите носит название анионирование. При анионировании происходит обмен анионов, содержащихся в воде, на анион, находящийся в анионите. Процесс ОН --анионирования на слабоосновных анионах представляет собой главным образом обмен анионов сильных кислот. Процесс ОН --анионирования на сильноосновном анионите представляет собой обмен всех ионов, содержащихся в обрабатываемой воде, на ион ОН -, находящийся в анионите.
Для подготовки добавочной воды на ХВО применяют схему глубокого химического обессоливания, которая состоит из последовательно расположенных фильтров первой и второй ступеней. В первую ступень очистки входят фильтры Нпр (предвключенный), Н1 – загруженные сильнокислотным катионитом Пьюролайт (SGC 100х10); а также фильтр А1 – загруженный слабоосновным анионитом Пьюролайт (А-847), Амберлайт (IRA-70 RF). При Н --катионировании на первой ступени одновременно с основным процессом происходит разрушение бикарбонатной щелочности воды. Во вторую ступень очистки входят фильтр Н2 – загруженный сильнокислотным катионитом Пьюролайт и фильтр А2 – загруженный сильноосновным анионитом Пьюролайт (SGA-600), основной задачей которого является удаление кремниевой кислоты из воды.
Осветленная вода после механических фильтров подается на водород-катионитовые фильтры, Нпр и Н1 ступени, загруженные катионитом. В Н-катионитовых фильтрах происходит замена основного количества содержащихся в воде катионов Са+, Mg+2 и частично Na+ эквивалентным количеством катионов водорода, находящихся в катоните.
Далее фильтрат подается на анионитовый фильтр 1 ступени, загруженный слабоосновным анионитом, обеспечивающий удаление из воды анионов сильных кислот (NO-3. Cl-SO4-2).
Далее фильтрат подается на Н-катионитовый фильтр 2 ступени, где происходит глубокая замена всех, содержащихся в воде катионов эквивалентным количеством водорода. Учитывая различную способность Са+2, Mg+2. Na+ к ионному обмену, вторая ступень в основном поглощает Na+.
Далее фильтрат подается на анионитовый фильтр второй ступени, способным удалять из воды анионы как сильных, проскочивших анионитовый фильтр первой ступени, так и слабых кислот (анионы кремнекислоты HsiO-3 и углекислоты НСО-3).
Для восстановления способности отработавшего ионита к обмену проводят регенерацию. Регенерация Н--катионного фильтра производится раствором серной кислоты, как наиболее дешевой и удобной в эксплуатации. Серьезным ограничением при регенерации серной кислотой является возможное загипсование катионита. Поэтому регенерацию катионита производят двумя порциями. Первую порцию регенерационного раствора серной кислоты пропускают с концентрацией 1.5%, а вторую порцию регенерационного раствора серной кислоты пропускают с концентрацией 4.0%. Регенерация анионитовых фильтров производится 4.0% раствором едкого натра. Для существенного снижения расхода реагентов применяют противоточную регенерацию фильтров. На ХВО расположены пять установок химического обессоливания воды, производительностью 140 м3/час каждая. Одна установка химического обессоливания воды работает только на переработке конденсата дренажных баков турбинных отделений энергоблоков №1–4, который собирается в баке «грязного» конденсата, расположенный на ХВО.
Окончательная очистка воды производится в фильтрах смешанного действия – ФСД (). При этом поток воды проходит через слой перемешанных зерен сильнокислотного катионита в Н- – форме (Амберсеп 252 Н) и высокоосновного анионита в ОН - – форме (Амберсеп 900 ОН). Переходящие в процессе ионного обмена в воду ионы Н+ и ОН – образуют воду, способствуя этим углублению степени очистки воды. При обработке вода поступает в фильтр через верхнее сборно-распределительное устройство, фильтруется через смесь катионита и анионита и далее отводится из фильтра с помощью нижнего сборно-распределительного устройства. Отключение ФСД на регенерацию производится по одному из следующих показателей: проскоку соединений кремневой кислоты или иона натрия; превышению заданной удельной электрической проводимости. Для регенерации ФСД применяют способ внутренняя регенерация. В качестве реагентов используют 4.0%-ные растворы серной кислоты и едкого натра.
Химическая сущность процесса обессоливания.
Н-катионирование протекает по реакции:
R-к H+ + K+ + A- = R-кК+ + Н+ +А+.
ОН–анионирование протекает по реакции:
R+AOH- + K+ + A- = R+AA- + K+ + OH-;
где R-K – высокомолекулярная матрица катионита.
R-A – высокомолекулярная матрица анионита.
К+ – катионы среды.
А- – анионы среды.
В процессе работы иониты истощаются, то есть теряют способность к поглощению ионов. Для восстановления поглощающей способности катионита и анионита производится регенерация их растворами кислоты (для катионитовых фильтров) и щелочи (для анионитовых фильтров), при этом происходит ионный обмен по реакциям: для катионита
CaR2 + H2SO4 → CaSO4 + 2HR
MgR2 + H2SO4 → MgSO4 + 2HR
2NaR + H2SO4 → Na2SO4 + 2HR