Светильники мобильны и легко переносимы. Их вес составляет в среднем 400-600 гр. Имеют защищенную от осадков конструкцию.
Модельный ряд, способен удовлетворить любые вкусы и запросы. От простых и "сдержанных" форм до стиля "модерн", "хай-тек" и стилизации "под старину".
Светильник на солнечных батареях -это оригинальный и практичный подарок. Вместе с добрыми пожеланиями дорогому или уважаемому человеку можно подарить частицу солнечного света и тепла. Что может быть приятнее?
В первую очередь ученые направили свои усилия на получение с помощью солнечной энергии воды. Вода в пустыне есть, да и найти ее сравнительно нетрудно — расположена она неглубоко. Но использовать эту воду нельзя — слишком много в ней растворено различных солей, она обычно еще более горькая, чем морская. Чтобы применить подпочвенную воду пустыни для полива, для питья, ее нужно обязательно опреснить. Если это удалось сделать, можно считать, что рукотворный оазис готов: здесь можно жить в нормальных условиях, пасти овец, выращивать сады, причем круглый год — солнца достаточно и зимой. По расчетам ученых, только в Туркмении может быть построено семь тысяч таких оазисов. Всю необходимую энергию для них будет давать солнце.
Принцип действия солнечного опреснителя очень прост. Это сосуд с водой, насыщенной солями, закрытый прозрачной крышкой. Вода нагревается солнечными лучами, понемногу испаряется, а пар конденсируется на более холодной крышке. Очищенная вода (соли-то не испарились!) стекает с крышки в другой сосуд.
Конструкции этого типа известны довольно давно. Богатейшие залежи селитры в засушливых районах Чили в прошлом веке почти не разрабатывались из-за отсутствия питьевой воды. Тогда в местечке Лас-Сали-нас по такому принципу был построен опреснитель площадью 5 тысяч квадратных метров, который в жаркий день давал по 20 тысяч литров пресной воды.
Но только сейчас работы по использованию солнечной энергии для опреснения воды развернулись широким фронтом. В туркменском совхозе «Бахарден» впервые в мире запустили самый настоящий «солнечный водопровод», обеспечивающий потребности людей в пресной воде и дающий воду для полива засушливых земель. Миллионы литров опресненной воды, полученной из солнечных установок, намного раздвинут границы совхозных пастбищ.
Согласно расчетам, солнце должно помочь в решении не только энергетических проблем, но и задач, которые поставил перед специалистами наш атомный, космический век. Чтобы построить могучие космические корабли, громадные ядерные установки, создать электронные машины, совершающие сотни миллионов операций в секунду, нужны новые
материалы — сверхтугоплавкие, сверхпрочные, сверхчистые. Получить их очень сложно. Традиционные методы металлургии для этого не годятся. Не подходят и более изощренные технологии, например плавка электронными пучками или токами сверхвысокой частоты. А вот чистое солнечное тепло может оказаться здесь надежным помощником. Некоторые гелиостаты при испытаниях легко пробивают своим солнечным зайчиком толстый алюминиевый лист. А если таких гелиостатов поставить несколько десятков? А затем лучи от них пустить на вогнутое зеркало концентратора? Солнечный зайчик такого зеркала сможет расплавить не только алюминий, но и почти все известные материалы. Специальная плавильная печь, куда концентратор передаст всю собранную солнечную энергию, засветится ярче тысячи солнц.
Нью-Йоркская компания Prism Solar Technologies разработала концепт солнечного модуля, который использует голограммы для фокусировки света, что может сократить стоимость солнечных модулей на 75%. Это сделает вырабатываемое ими электричество конкурентоспособным в противостоянии с электричеством, вырабатываемым из ископаемого топлива.
В настоящее время, достижением компании для получения преимущества в цене солнечных батарей, базирующихся на кремнии, является фокусировка солнечного света при помощи зеркал или линз, и таким образом сокращение общей площади кремния, необходимого для создания нужного количества электричества.
Обычные световые концентраторы являются довольно громоздкими и непривлекательными, а также они далеко не идеальны для установки на крышах пригородных домов. Новая технология заменяет неприглядные концентраторы аккуратными панелями. Рик Левандовски, президент и исполнительный директор компании говорит, что панели можно устанавливать на крыши и даже встраивать в окна и стеклянные двери.
Системе необходимо на 25-85% меньше кремния, чем в панели из кристаллического кремния сопоставимой мощности, потому что фотоэлектрическим материалом не нужно покрывать всю поверхность солнечной панели, говорит Левандовски. Вместо того, фотоэлектрический материал располагается в несколько рядов. Слой голограмм (созданная при помощи лазера структура, которая преломляет свет) направляет свет на слой стекла, где он продолжает отражаться от внутренней поверхности стекла до тех пор, пока не найдет свой путь к одному из участков фотоэлектрического кремния. Сокращение фотоэлектрического материала необходимо для снижения цены с, приблизительно, $4 за ватт до $1.50.
Компания собирается начать выпуск первого поколения своих модулей уже в конце этого года, продавая их по цене $2.40 за ватт. Последующие поколения модулей с более прогрессивной технологией должны будут сопутствовать дальнейшему снижению цены.
В своих способностях концентрировать свет голограммы не так мощны как обычные концентраторы. Они могут умножать количество света, падающего на ячейки на коэффициент 10, в то время как системы, базирующиеся на линзах, увеличивают этот коэффициент на 100, а некоторые даже на 1000.
Хорошо известно отрицательное воздействие энергетических производств на окружающую среду. Тепловые электростанции, например, сжигают в своих топках ценное материальное сырье — уголь, нефть, газ, — которое в течение миллиарда лет накапливалось на Земле в результате сложных, до конца не понятых процессов. Уничтожение этих запасов будет преступлением перед грядущими поколениями. Работа ТЭС характеризуется значительным тепловым загрязнением биосферы. Не менее 60% энергии, полученной при сгорании углеводородного топлива, бесполезно рассеивается в атмосфере, что ведет к повышению средней мировой температуры, отрицательно влияет на динамику атмосферы, на погодные условия вокруг электростанции. В результате сгорания топлива образуются токсичные продукты — угарный газ, двуокись серы, окислы азота, углеводороды, твердые частицы. Особенно велики выбросы сернистых соединений. Токсичные продукты, попадая в атмосферу, губительно воздействуют на живую и неживую природу Земли. Таким образом, эксплуатация тепловых электростанций отличается значительным потреблением минерально-сырьевых ресурсов, тепловым и химическим загрязнением биосферы Земли. Важным параметром следует считать также воздействие на биосферу на этапе создания энергосистемы — при производстве основных элементов, транспортировке к месту строительства, строительстве. Создание ТЭС характеризуется малым воздействием на окружающую среду.
В случае солнечных электростанций имеет место обратная картина — малое воздействие на окружающую среду во время эксплуатации и большое воздействие на этапе создания системы.
Потенциальные возможности энергетики, основанной на использовании непосредственно солнечного излучения, чрезвычайно велики.
Заметим, что использование всего лишь 0,0125 % этого количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики, а использование 0,5 % - полностью покрыть потребности на перспективу.
К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьезных препятствий такой реализации является низкая интенсивность солнечного излучения. Даже при наилучших атмосферных условиях (южные широты, чистое небо) плотность потока солнечного излучения составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечного излучения "собирали" за год энергию, необходимую для удовлетворения всех потребностей человечества, нужно разместить их на территории 130000 км2!
Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в ней жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам, изготовление коллекторов солнечного излучения площадью 1 км2 требует примерно 104 тонн алюминия. Доказанные же на сегодня мировые запасы этого металла оцениваются в 1,17´109 тонн.
Из написанного ясно, что существуют разные факторы, ограничивающие мощность солнечной энергетики. Предположим, что в будущем для изготовления коллекторов станет возможным применять не только алюминий, но и другие материалы. Изменится ли ситуация в этом случае? Будем исходить из того, что на отдельной фазе развития энергетики (после 2100 года) все мировые потребности в энергии будут удовлетворяться за счет солнечной энергии. В рамках этой модели можно оценить, что в этом случае потребуется "собирать" солнечную энергию на площади от 1´106 до 3´106 км2. В то же время общая площадь пахотных земель в мире составляет сегодня 13´106 км2.
Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки. Подсчеты показывают, что для производства 1 МВт´год электрической энергии с помощью солнечной энергетики потребуется затратить от 10 000 до 40 000 человеко-часов. В традиционной энергетике на органическом топливе этот показатель составляет 200-500 человеко-часов.