2.5 Получение выражения для ядерного псевдомагнитного поля
Рассмотрим теперь движение нейтрона в магнитном поле H. В этом случае энергия взаимодействия W+ частицы с магнитным моментом, параллельным H , дается хорошо известным выражением W+ = -μ H (μ- магнитный момент нейтрона), а аналогичная величина для частицы с противоположным направлением спина – выражением W- =μH. Наличие отличной от нуля разности W+ - W-=-2μH приводит к ларморовской прецессии спина нейтрона в магнитном поле H с частотой [24]
(25)За время t спин повернется на угол υ = ωt. Если магнитное поле сосредоточено в слое толщиной l, то нейтрон, влетающий в область, занятую полем, под некоторым углом, пройдет этот слой за время t = l/√z. Следовательно, его спин повернется на угол
(26)что полностью совпадает с полученным ранее результатом.
Продолжая далее аналогично с магнитным полем, естественно для описания прецессии спина нейтрона, вызванной ядерным взаимодействием (ниже мы будем называть ее ядерной прецессией), ввести эффективное магнитное поле
(27)которое приводит к прецессии с той же частотой ω, что и обычное магнитное поле H . Отметим, что в области энергий нейтрона, в которой амплитуда рассеяния постоянна, частота ω также является постоянной, характеризующей вращательную способность вещества, обусловленную ядерным взаимодействием. Это имеет место для малых энергий нейтронов. При увеличении скорости частота прецессии спина начинает зависеть от энергии; в частности, вблизи каждого из резонансов частота резко возрастает, а при прохождении резонанса вследствие изменения знака реальной части амплитуды рассеяния изменяется знак. Напомним (см., например, [2,22]), что вблизи резонанса амплитуда рассеяния
(28)где E– энергия частицы; E0 – энергия резонанса; Г – ширина резонансного уровня. Вследствие соотношения (6,29) величина эффективного квазимагнитного поля ядерного происхождения в области низких энергий является постоянной, характеризующей данное вещество, а при более высоких энергиях зависит от энергии. Для поляризованной протонной мишени, например, в случае полной поляризации ω ≈ 5*108 с-1, Hэф ≈ 3*104Гс = 3 Тл и на два порядка превосходит обычное магнитное поле, создаваемое поляризованными магнитными моментами протонов. В этих же условиях для тепловых нейтронов u = 2,2*105 см*с-1 длина L, на которой произойдет полный поворот спина, равна L ≈ 10-3 см.
С учетом сказанного выше мы можем записать уравнение Шредингера для когерентной волны, взаимодействующей с поляризованной мишенью, помещенной в магнитном поле B:
(29) (30)где μ = μσ – оператор магнитного момента нейтрона. Заметим, что Ǔ(r) можно переписать следующим образом:
(31)где
эффективное квазимагнитное ядерное поле[1].
Заключение
Взаимодействие нейтронов с атомами является сравнительно слабым, что позволяет нейтронам достаточно глубоко проникать в вещество — в этом их существенное преимущество по сравнению с рентгеновскими и γ-лучами, а также пучками заряженных частиц. Из-за наличия массы нейтроны при том же импульсе (следовательно, при той же длине волны) обладают значительно меньшей энергией, чем рентгеновские и γ-лучи, и эта энергия оказывается сравнимой с энергией тепловых колебаний атомов и молекул в веществе, что дает возможность изучать не только усредненную статическую атомную структуру вещества, но и динамические процессы, в нем происходящие. Наличие магнитного момента у нейтронов дает уникальную возможность использовать их для изучения магнитной структуры и магнитных возбуждений вещества, что очень важно для понимания свойств и природы магнетизма материалов.
Рассеяние нейтронов атомами обусловлено, в основном, ядерными силами, следовательно, сечения их когерентного рассеяния никак не связаны со строением электронных оболочек атомов. Поэтому "освещение" материалов нейтронами позволяет различать положения атомов легких (водород, кислород и др.) элементов, идентификация которых почти невозможна с использованием рентгеновских и γ-лучей. По этой причине нейтроны успешно применяются при изучении биологических объектов, в материаловедении, в медицине и др. областях.
Список использованной литературы
1. В.Г. Барышевский. Ядерная оптика поляризованных сред. М.: Энергоатомиздат, 1995.-320с.
2. В.В. Федоров. Нейтронная физика. СПб.: изд-во ПИЯФ, 2004. 334стр.
3. И.В. Савельев. Курс общей физики. Том 3. М.: Наука, Гл. ред. физ-мат. лит., 1970.— 537с.
4. http://ru.wikipedia.org/wiki/Волновая_функция
5. http://slovari.yandex.ru/dict/bse/article/00002/79600.htm
6. http://mirslovarei.com/content_bes/Dixroizm-19067.html