11. СТАТИКА РІДИН ТА ГАЗІВ.
В цій лекції розглядаються основні питання гідро та аеро-статики, тобто умови і закономірності рівноваги рідин і газів під дією прикладених до них сил і, крім того, умови рівноваги твердих тіл, що знаходяться в рідині чи газі.
1. ТИСК В РІДИНАХ І ГАЗАХ. ЗАКОН ПАСКАЛЯ.
Введемо спочатку поняття тиску. Розглянемо деяку поверхню S, на яку діє розподілена сила. Виділимо на цій поверхні нескінченно малий майданчик dS (рис. 11.1). Нехай
– це сила, що діє на майданчик dS.Відношення сили
до площі dS називають напругою: (11.1) Орієнтацію майданчика dS задають з допомогою вектора нормалі до нього. Якщо S – це поверхня якогось тіла, то домовились проводити нормаль назовні від поверхні тіла. На рис. 11.1 показано одиничний вектор цієї нормалі.Напругу
можна розкласти на дві складові: вздовж нормалі і перпендикулярно до неї, тобто в площині, дотичній до майданчика dS. Першу складову називають нормальною, а другу – тангенціальною напругами, що діють на майданчику dS: (11.2)Якщо напрям
і співпадають, то цю напругу називають натягом T, в протилежному випадку – тиском P.Тиском Р називається фізична величина, що дорівнює модулю нормальної складової сили, яка діє на одиницю площі поверхні тіла:
(11.3)Напруга в цьому випадку дорівнює:
Зауважимо, що тиск – величина скалярна.
Особливістю рідин та газів є їх текучість, зумовлена малими силами тертя під час відносного руху шарів, що дотикаються, та відсутністю тертя спокою. Рідинам і газам не властива пружність форми, вони мають лише об’ємну пружність. В стані рівноваги напруга в рідинах і газах завжди нормальна до майданчика, на який вона діє. Дотичні (тангенціальні) напруги із-за текучості в рідинах та газах під час рівноваги не виникають.
З цієї точки зору рідини та гази можна означити як середовища, в яких при рівновазі дотичні напруги існувати не можуть.
З даного означення випливає, що в стані рівноваги нормальна напруга в рідині чи газі (тиск) не залежить від орієнтації майданчика, на який вона діє. Це твердження називають законом Паскаля. Іншим чином його можна сформулювати так:
Тиск, що діє на рідину чи газ, передається в усіх напрямках без зміни.
Закон Паскаля пояснює роботу гідравлічного пресу (рис. 11.2).
В газах нормальна напруга завжди направлена всередину газу, тобто – це тиск. В рідинах
, як правило, теж тиск, хоч інколи можна реалізувати випадки, коли буде натягом (від’ємний тиск).2. ОСНОВНЕ РІВНЯННЯ ГІДРОСТАТИКИ. БАРОМЕТРИЧНА ФОРМУЛА.
Сили, що діють в рідині, ділять звичайно на сили масові (об’ємні) і сили поверхневі.
Масова сила пропорційна масі
, а отже, і об’єму елемента рідини, на який вона діє. Цю силу можна записати як , де називають об’ємною густиною масових сил. Прикладом масових сил є сила тяжіння: де – густина рідини.Поверхневі сили – це сили, що діють на поверхню даного об’єму рідини завдяки дії нормальних та дотичних напруг з боку оточуючої рідини.
Розглянемо рідину, що перебуває у рівновазі. В цьому випадку дотичних напруг немає. Виділимо в рідині нескінченно малий елемент об’єму
у вигляді циліндра з площею основи і довжиною , розташованого вздовж вісі X (рис. 11.3):Тиск в т.xдорівнює
, в т. : . Сили тиску на основи циліндра відповідно дорівнюють:Проекція рівнодійної сил тиску на вісь X:
Вираз в дужках є не що інше, як похідна від Р по x; але, оскільки Pзалежить також і від yтаz, то це частинна похідна:
(11.4)Таким чином, проекція рівнодійної сил тиску на вісь Xпропорційна елементу об’єму і її можна подати у виді:
. – це проекція на вісь X сили, яка діє на одиницю об’єму рідини.Аналогічно для двох інших осей Yта Z:
Вектор
(11.5)Вираз в дужках є градієнт скаляра Р:
(11.6)Об’ємна густина рівнодійної сил тиску, що діють на елементи об’єму рідини, дорівнює градієнту тиску, взятому з протилежним знаком.
В стані рівноваги сила
повинна зрівноважуватись масовою силою : . Це дає рівняння , (11.7)яке називають основним рівнянням гідростатики. В координатній формі воно має вид системи (11.8):
(11.8)Якщо масових сил немає, тобто
, то з виразу (11.8) матимемо: або .При рівновазі у відсутності масових сил тиск Р один і той же по всьому об’єму рідини.
Це ще одне формулювання закону Паскаля (Блез Паскаль,
1623 – 1662).
Зокрема, якщо масові сили відсутні, рідина може перебувати в рівновазі тільки тоді, коли зовнішній тиск на її поверхню один і той же в усіх точках цієї поверхні. Інакше виникне рух рідини. У відсутності масових сил однаковий тиск на поверхню рідини приводить до появи такого ж тиску в усіх точках всередині рідини.
Якщо рідина знаходиться в полі тяжіння, то
; направимо вісь Zвертикально вгору, тоді: (11.9)Тиск залишається сталим в кожній площині
. Горизонтальні площини – це площини однакового тиску. Вільна поверхня рідини горизонтальна тому, що вона перебуває під сталим тиском атмосфери.Якщо рідина не стискується, то
і (11.9) інтегрується: , (11.10)де
– тиск на висоті тобто атмосферний тиск, якщо початок розташувати на вільній поверхні рідини.Рівняння (11.10) охоплює практично всю шкільну гідростатику.
(інакше ) – це гідростатичний тиск, викликаний вагою рідини, який залежить від глибини занурення в рідину.Застосуємо основне рівняння гідростатики до земної атмосфери. Одержимо (див. (11.9)):
(11.11)В останньому виразі замість частинної похідної записана звичайна, оскільки Р не залежить від xтаy. Для земної атмосфери наближено можна використати рівняння Клапейрона-Менделєєва: