По начальным условиям (при t = 0 x10 = 0 и
= VA = 0) находим С5 и С6:C5 = 0 , C6 = 0,
Для определения ℓ и t используем условия: в т.B(при t = t) , x1 = ℓ ,
= VB = 4,429 м/с. Решая систему уравнений находим: = g×(sina - f×cosa)×t Þ 4,429 = 9,81×(sin45° - 0,3×cos45°)×t , Þt = 0,912 сx1 = g×(sina - f×cosa)×t2/2 ℓ = 9,81×(sin45° - 0,3×cos45°)×0,9122/2 = 2,02 м .
Дано:
АВ=20 см.
АС=6 см.
см/сa
=15 cм/cНайти:
, , a , a , ,Решение:
ОА=ОВ=
14,1 см. =0,7 =СP=
см. = = см/сa
=15 см/ ,т.к. ползуны двигаются по направляющим и совершают только поступательное движение.
см/ см/ 9,85 см/ см/сОтвет:
см/с см/с 9,85 см/ =15 см/Статика твердого тела
I. Плоская система сил система произвольно расположенных сил
На схеме показаны три способа закрепления бруса. Задаваемая нагрузка и размеры (м) во всех трех случаях одинаковы.
Р = 10 кН, q = 4 кН/м, исследуемая реакция YA
Определить реакции опор для того способа закрепления бруса, при котором исследуемая реакция Ya имеет наименьший модуль.
Дано: схемы закрепления бруса ( а, б, в): Р = 10 кН; q = 4 кН/м.
Определить реакции опор для того способа закрепления, при котором реакция YA имеет наименьшее числовое значение.
Решение
Рассмотрим систему уравновешивающихся сил, приложенных к конструкции. Действие связей на конструкцию заменяем их реакциями (рис. 2): в схеме а — XА, YА, YВ в схеме б — Y’А, Y’В и RC, в схеме в — Y”А , RC, RD. Равномерно распределенную нагрузку интенсивностью q заменяем равнодействующей
Q = q • 4 = 16кН.
Чтобы выяснить, в каком случае реакция YA является наименьшей, найдем ее для всех трехсхем, не определяя пока остальных реакций
Длясхемыа
Из первого уравнения подставляем YB во второе, получаем:
8,67 кHДля схемы б
Из первого уравнения подставляем Y’B во второе, получаем:
13 кНДля схемы в
Из первого уравнения подставляем RD во второе, получаем:
5 кНТаким образом, реакция YA имеет наименьшее числовое значение, при закреплении бруса по схеме в.
Определим остальные опорные реакции для этой схемы.
В схеме а:
В схеме б:
8 кНВ схеме в:
Определить реакции опор для способа закрепления бруса, при котором Ма имеет наименьшее числовое значение.
Дано:
Р=20
М=10 кН* qМ
q=2 кН/м
Ма = ?
Решение
1. Даны три исходные схемы закрепления бруса мысленно в схемах отбросим связи в точках опор, заменяя их реакциями связей.
2. Равномерно-распределённую нагрузку «q» заменяем равнодействующей «Q» и приложим её в центре действия нагрузки
«q» , получим Q=q*LQ=2*2=4кН.
3. Для каждой схемы составим минимальное число уравнений равновесия для определения исследуемой реакции.
Cоставим уравнения равновесия:
Ma(fr)=0 ; Ma+M-4P*cos45-3Q=0Отсюда Maбудет
Ma=-M+P*sin45-3Q=-10+56+12=58kH*м
Ya=.58kH*м
Мa(Fk)=0; Ма -4P*sin45+M-3Q-2Xв=0
F(кх)=0; - Хв+Р*cos45=0 Xв=14кН
Отсюда Ма будет:
Ма=4Р*sin45+3Q+2Xв-M=56+12+28=86кН*м
Ма=86кН
Ma(Fk)=0; Ма+М-4Р*cos45-3Q+4Rc*cos45+2Rc*cos45=0
F(кх)=0; Rc*cos45+Pcos45=0 Rc=20кН
ОтсюдаМабудет:
Ма=-М+4P*cos45+3Q-6Rc*cos45=-10+56+12-84=26кН*м
Таким образом, исследуемая наименьшая реакция будет при закреплении бруса по схеме в). Найдём все реакции.
Составим для этой схемы три уравнения равновесия:
Fкх=0 Rc*cos45+Pcos45=0
Fкy=0 Ya-P*cos45-Q+Rc*cos45=0
Ма(Fк)=0 Ма+М-4Р*cos45-3Q+4Rc*cos45+2Rc*cos45=0
Rc=20кН
Yа= P*cos45+Q-Rc*cos45=7+4-14=3кН
Ма=-М+4P*cos45+3Q-6Rc*cos45=-10+56+12-84=26кН*м
Ответ: Ма=26кН.