Смекни!
smekni.com

Стаціонарні та рівномірно-обертові конфігурації точкових вихорів (стр. 4 из 4)

3) Знайдено ряд несиметричних вихрових структур. Побудовано каталог несиметричних конфігурацій при (рис.5 та рис.6). Більшість з представлених несиметричних вихрових структур являються новими.

4) Побудовано траєкторії руху отриманих рівномірно-обертових систем точкових вихорів без початкового збурення та з малим збуренням початкових координат.

5) Проведено чисельний аналіз стійкості всіх представлених рівномірно-обертових конфігурацій точкових вихорів. Показано, що всі симетричні конфігурації вихорів, представлені на рис.4, являються стійкими відносно малих збурень початкових координат. Всі несиметричні конфігурації (рис.5 та рис.6), являються нестійкими відносно малих збурень початкових координат.

6) Побудовані в роботі каталоги симетричних та несиметричних конфігурацій точкових вихорів однакової інтенсивності відіграють важливу роль та дозволяють сформувати ряд нових задач вихрової статики. Зокрема, несиметричні вихрові структури являються досить цікавою та новою задачею, їх можна використовувати в якості початкового наближення при побудові нових розв’язків системи рівнянь руху точкових вихорів в ідеальній нестисливій рідині на необмеженій площині.

СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ ПО ТЕМІ ДИСЕРТАЦІЇ

1. Губа А.О., Гуржій О.А., Мелешко В.В. Рівномірно-обертові конфігурації точкових вихрів // Вісник Київського Університету. - Серія фіз.-мат. науки. - 2006. - Вип.1. - С.100-104.

2. Губа А.О. Про особливості одного алгоритму знаходження рівномірно-обертових конфігурацій точкових вихорів // Вісник Київського Університету. – 2007. – Т.18. – С.103-106.

3. Ареф Х., Мелешко В.В., Губа А.А., Гуржий А.А. Равномерно-вращательные конфигурации точечных вихрей // Прикладна гідромеханіка. – 2007. – Т.9, №2-3. – С.5-24.

4. Мелешко В.В., Губа А.А. Равномерно вращающиеся конфигурации точечных вихрей // Актуальные проблемы механики деформируемого твердого тела: Зб. наук. пр. – Донецк: Юговосток, 2006. - С. 250-252.

5. Губа А.О. Дослідження стійкості розв’язків нелінійних диференціальних рівнянь руху однакових точкових вихорів // Dynamical system modeling and stability investigation (DSMSI): Міжнар. конфер. КНУ імені Т.Шевченка, 22-25 травня 2007. – К., 2007. – С. 39.

6. Guba A. Stability of uniformly rotating configurations of point vortices // Euler Equations: 250 Years On (EE 250), - Aussois, France, June 18-23 2007. – Poster session. – http://www.oca.eu/etc7/EE250/abstracts/GUBA.pdf.

7. Guba A.O., Meleshko V.V. Stability of uniformly rotating configurations of point vortices // Актуальні проблеми механіки суцільного середовища і міцності конструкцій: Міжнар. наук.-техн. конфер. пам’яті академіка НАН Україна В.І.Моссаковського (1919-2006), 17-19 жовтня 2007 р. – Дніпропетровськ, 2007. – С. 173-174.

АНОТАЦІЇ

Губа А.О. Стаціонарні та рівномірно-обертові конфігурації точкових вихорів. – Рукопис.

Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю 01.02.05 – механіка рідини, газу та плазми, Київський національний університет імені Тараса Шевченка, Київ, 2008.

Дисертація присвячена знаходженню стаціонарних та рівномірно-обертових конфігурацій точкових вихорів однакової інтенсивності в ідеальній нестисливій рідині на необмеженій площині.

В роботі представлено новий метод знаходження рівномірно-обертових конфігурацій систем точкових вихорів однакової інтенсивності . Метод базується на розв’язанні нелінійної алгебраїчної системи рівнянь руху точкових вихорів. Представлений метод дозволяє визначити як стійкі, так і нестійкі конфігурації точкових вихорів на площині.

Побудовано каталог симетричних конфігурацій точкових вихорів при . Класифіковано отримані вихрові структури на правильні, полігональні та розміщені по концентричних колах Проведено порівняльний аналіз з класами рівномірно-обертових конфігурацій точкових вихорів, наведеними в літературі.

За допомогою запропонованого методу знайдено ряд несиметричних вихрових структур. Побудовано каталог несиметричних конфігурацій при . Більшість з представлених несиметричних вихрових структур являються новими. Наведено всі точні початкові координати вихорів в декартовій системі координат як для симетричних, так і для несиметричних рівномірно-обертових вихрових структур.

Побудовано траєкторії руху всіх отриманих конфігурацій точкових вихорів без початкового збурення та з малим збуренням початкових координат. Інтегрування проводилось за допомогою методу Рунге-Кутта.

Проведено чисельний аналіз стійкості всіх представлених рівномірно-обертових конфігурацій точкових вихорів. Показано, що всі симетричні конфігурації вихорів, представлені на рис.4, являються стійкими відносно малих збурень початкових координат. Всі несиметричні конфігурації (рис.5 та рис.6), являються нестійкими відносно малих збурень початкових координат.

Ключові слова: точковий вихор, стаціонарні та рівномірно-обертові конфігурації, інтенсивність, метод Рунге-Кутта, траєкторії руху, стійкість, збурення початкових координат.

АННОТАЦИЯ

Губа А.А. Стационарные и равномерно-вращательные конфигурации точечных вихрей. – Рукопись.

Диссертация на соискание научной степени кандидата физико-математических наук по специальности 01.02.05 – механика жидкости, газа и плазмы, Киевский национальный университет имени Тараса Шевченка, Киев, 2008.

Диссертация посвящена нахождению стационарных и равномерно-вращательных конфигураций точечных вихрей равной интенсивности в идеальной несжимаемой жидкости на неограниченной плоскости.

В работе представлено новый метод нахождения равномерно-вращательных конфигураций систем точечных вихрей одинаковой интенсивности, который основан на решении нелинейной алгебраической системы уравнений движения точечных вихрей. В качестве начального приближения выбирается стационарная точка потока жидкости. В эту стационарную точку помещается точечный вихрь, интенсивность которого, по мере проведения итераций, постепенно увеличивается от нуля до интенсивности остальных вихрей конфигурации. На каждом итерационном шаге решается нелинейная система алгебраических уравнений порядка , в результате определяется новая равномерно-вращательная конфигурация точечных вихрей с вихрем. Представленный метод позволяет определить как устойчивые, так и неустойчивые конфигурации точечных вихрей на плоскости.

Построено каталог симметричных конфигураций точечных вихрей. Полученные вихревые структуры классифицированы на правильные, полигональные и расположенные по концентрическим окружностям. Проведено сравнительный анализ с классами равномерно-вращательных конфигураций точечных вихрей, представленными в литературе.

С помощью предложенного метода найдено ряд несимметричных вихревых структур. Построено каталог несимметричных конфигураций при . Большинство из представленных несимметричных вихревых структур являются новыми. Приведены все точные начальные координаты вихрей в декартовой системе координат как для симметричных, так и для несимметричных равномерно-вращательных вихревых структур.

Построены траектории движения всех полученных конфигураций точечных вихрей без начального возмущения и с малым возмущением начальных координат. Интегрирование проводилось с помощью метода Рунге-Кутта.

Найдено энергетические параметры систем точечных вихрей без возмущения начальных координат и с возмущениями. Показано, что 2 из 4 параметров не изменяются под действием возмущений, остальные изменяются минимально.

Проведено численный анализ устойчивости всех представленных равномерно-вращательных конфигураций точечных вихрей. Показано, что все симметричные конфигурации вихрей, представленные на рис.4, являются устойчивыми относительно малых возмущений начальных координат. Все несимметричные конфигурации (рис.5 и рис.6), являются неустойчивыми относительно малых линейных возмущений начальных координат.

Ключевые слова: точечный вихрь, стационарные и равномерно-вращательные конфигурации, интенсивность, метод Рунге-Кутта, траектории движения, устойчивость, возмущения начальных координат.

ABSTRACT

Guba A.O. Stationary and uniformly rotating configurations of point vortices. – Manuscript.

Thesis for the Candidate’s Degree in Physics and Mathematics by specialty: 01.02.05 - Mechanics of liquid, gas and plasma, Kyiv National Taras Shevchenko University, Kyiv, 2008.

This thesis is devoted to the searching of stationary and uniformly rotating configurations of point vortices of identical intensity in an ideal incompressible fluid on an unbounded plane.

A new method for finding uniformly rotating configurations of systems of point vortices of identical intensity is presented. The method is based on solving the nonlinear algebraic system of equations of motion of point vortices, which allows defining both steady and unsteady point vortex configurations on a plane.

A catalogue of symmetric configurations of point vortices is listed. The vortex structures classified on correct, polygonal and placed on concentric circles. A comparative analysis is conducted with classes of uniformly rotating point vortex configurations as found in the literature.

By applying this new method, a series of asymmetrical vortex structures was found, which are listed in a catalogue. The majority of the presented asymmetrical vortex structures is new. All of exact initial co-ordinates of vortices are resulted in the cartesian system of co-ordinates both for symmetric and for asymmetrical uniformly rotating vortex structures.

By the method of Runge-Kutta the trajectories of the point vortex configurations are established both without initial perturbations and with small perturbations of the initial positions.

The numerical analysis of Routh’s stability is conducted for all of the presented uniformly rotating point vortex configurations. It is shown that all the symmetric point vortex configurations, presented in Fig.4, are stable when subjected to small perturbations. All asymmetrical configurations (Fig.5 and Fig.6) are unstable with respect to small perturbations of the initial vortex positions.

Key words: point vortex, stationary and uniformly rotating configurations, intensity, Runge-Kutta`s method, trajectories of motion, stability, perturbations of the initial vortex positions.