Для атомных термов полная мультиплетность фактически реализуется только в том случае, когда L больше или равно S. Для молекул при Λ= 0 (т. е. для Σ-состояний) терм тоже будет одиночным, если пренебречь вращением. Но фактически имеет место малое расщепление, вызванное взаимодействием с вращением молекулы. Для других молекулярных термов мультиплетность реализуется полностью. Состояния с мультиплетностью, превышающей триплетную, встречаются редко, но даже в том случае, когда S превосходит Λ, полная мультиплетность все-таки обнаруживается.
4. Электронные конфигурации для молекул
В упрощенной модели „соединенного" атома, мы имеем возможность приписать каждому электрону четыре квантовых числа: n — главное квантовое число, принимающее целые значения 0,1,...; l — азимутальное квантовое число, определяющее орбитальный момент электрона и принимающее значения 0, 1, …, n-1; λ — квантовое число, определяющее проекцию орбитального момента на ось молекулы и принимающее значения 0,1,…, l; наконец, спин электрона, равный +1/2 и -1/2. В случае атома электрон обозначается численным значением n и буквами s, p, d, f и т. д., указывающими соответственно на значения l = 0, 1, 2, 3, ... Продолжая формальную аналогию с атомом, электроны в молекулах при значениях λ = 0 1, 2, 3,... обозначают соответственно малыми греческими буквами ρ, π, δ и т. д. К этим квантовым числам снова применим принцип Паули. В молекулах мы имеем заполненные λ-или l-субоболочки, для которых результирующие орбитальный и спиновой моменты равны нулю. Соотношения между электронными конфигурациями соединенного атома и соответствующей молекулы приводятся ниже. Количество электронов в субоболочке по-прежнему обозначается числом, которое пишут сверху после других символов.
Соединенный атом | 1s2 | 2s2 | 2p6 | 3s2 | 3p6 | 3d10 |
Молекула | 1sσ2 | 2sσ2 | 2pσ22pπ4 | 3sσ2 | 3pσ23pπ4 | 3dσ23dπ43dδ4 |
Модель „соединенного" атома подвержена, однако, с многими ограничениями. Мэлликен рассмотрел различные возможные способы обозначения электронных конфигураций в молекулах. Часто желательно рассматривать внутренние электроны атомов, образующих молекулу, как остающиеся при своих атомах, а не как находящиеся на молекулярных орбитах. Тогда оказывается затруднительным приписать определенные главные квантовые числа внешним электронам. Мэлликен рассмотрел связывающие и разрыхляющие свойства молекулярных орбит различных типов и ввел в употребление буквы z, у, x, обозначающие электроны в порядке убывания их связывающих свойств.
5. Электрические и оптические свойства молекул
Поведение вещества в электрическом поле определяется основными электрическими характеристиками молекулы — постоянным дипольным моментом и поляризуемостью. Дипольный момент означает несовпадение центров тяжести положительных и отрицательных зарядов в молекуле, т. е. электрическую асимметрию молекулы Соответственно молекулы, имеющие центр симметрии, например H2, лишены постоянного дипольного момента; напротив, в HCl электроны смещены к атому Cl и дипольный момент равен 1,03 D (1,03×10-18 ед. СГС). Поляризуемостью характеризуется способность электронной оболочки любой молекулы смещаться под действием электрического поля, в результате чего в молекуле создаётся индуцированный дипольный момент. Значения дипольного момента и поляризуемости находят экспериментально с помощью измерений диэлектрической проницаемости. В случае аддитивности свойств молекул дипольный момент может быть представлен суммой дипольных моментов связей (с учётом их направления), то же относится к поляризуемости молекулы.
Оптические свойства вещества характеризуют его поведение в переменном электрическом поле световой волны — тем самым они определяются поляризуемостью молекулярного вещества. С поляризуемостью непосредственно связаны преломление и рассеяние света, оптическая активность и другие явления, изучаемые молекулярной оптикой.
6. Молекулы с одинаковыми ядрами
Молекулы с одинаковыми ядрами, например такие, как Н2, 03, N3, обладают дополнительными свойствами симметрии, существующими благодаря равенству зарядов обоих ядер. Поэтому возникает необходимость провести дальнейшее подразделение электронных состояний по следующему признаку: электронная волновая функция остается неизменной или меняет знак при отражении в центре симметрии. В первом случае состояния снабжаются индексом g, во втором случае—индексом u.
Любой энергетический уровень двухатомной молекулы является симметричным (s) или антисимметричным (а) в зависимости от того, остается неизменной или меняет знак полная волновая функция при перестановке обоих ядер. Можно показать, что для любого электронного состояния молекулы с одинаковыми ядрами все положительные уровни (+) являются симметричными (s), а все отрицательные (-) антисимметричными (а) или наоборот. Таким образом, симметрия a или s вращательных уровней оказывается снова чередующейся в зависимости от того, четным или нечетным является вращательное квантовое число К. Было найдено также, что состояния с симметрией a и s имеют различные статистические веса, причем отношения этих весов является функцией спина ядра. Поэтому чередующиеся вращательные уровни, а следовательно, и чередующиеся линии в ветвях полос обнаруживают чередующиеся интенсивности. Так, например, в случае азота со спином ядра, равным единице (N14), линии чередуются с отношением интенсивностей 1:2, тогда как для водорода со спином ядра, равным 1/2, это отношение равно 1:3. При спине ядра, равном нулю, как в 02 и Не3, имеется один ряд уровней со статистическим весом, равным нулю. В этом случае чередующиеся линии в ветвях полностью отсутствуют.
Заключение
Электрические, оптические, магнитные и другие свойства молекулы в конечном счёте связаны с волновыми функциями и энергиями различных состояний молекул; через них выражаются и электрический дипольный момент, и магнитный момент, и поляризуемость, и магнитная восприимчивость. Прямую информацию о состояниях молекулы и вероятностях перехода между ними дают молекулярные спектры.
Частоты в спектрах, соответствующих вращательным переходам, зависят от моментов инерции молекулы, определение которых из спектроскопических данных позволяет получить наиболее точные значения межатомных расстояний.
Общее число линий или полос в колебательном спектре молекулы зависит от её симметрии. Частоты колебаний, наблюдаемые в спектрах, определяются, с одной стороны, массами атомов и их расположением, с другой — динамикой межатомных взаимодействий. Теория колебаний многоатомных молекул соответственно опирается на теорию химического строения и классическую механику связанных колебаний. Исследование колебательных спектров позволяет сделать ряд выводов о строении М., о межатомных и межмолекулярных взаимодействиях, изучать явления таутомерии, поворотной изомерии.
Электронные переходы в молекуле характеризуют структуру их электронных оболочек, состояние химических связей. Спектры молекул, обладающих большим числом сопряжённых связей, характеризуются длинноволновыми полосами поглощения, попадающими в видимую область. Изучение электронно-колебательных спектров молекулы необходимо для понимания естественной и магнитной оптической активности.
Литература
1. Зайдель А.Н., Островская Г.В., Островский Ю.И. Техника и практика спектроскопии. М., 1972
2. Гейдон А.И. Энергия диссоциации и спектры двухатомных молекул
3. Герцберг, Герхард. Спектры и строение двухатомных молекул – NewYork, 1915.
4. Летохов В.С., Чеботарев В.П. Принципы нелинейной лазерной спектроскопии. М., 1975
5. Собелман И.И. Введение в теорию атомных спектров – ФМГ, 1967.
6. Фрим С.Э. Оптические спектры атомов – ФМГ, 1963.
7. http://gatchina3000.ru/great-soviet-encyclopedia.