2.9 Теплові насоси
2.9.1 Загальна характеристика
У природі, виробництві, сільському господарстві, побуті є значні запаси розсіяної низькотемпературної теплової енергії, яку можна ефективно використати. Для її концентрації застосовують теплові помпи (теплові помпові установки – ТПУ). Це пристрій, який за допомогою механічної або електричної енергії трансформує теплову енергію низького потенціалу в теплову енергію більш високих параметрів.
Сучасні ТПУ по принципу роботи розділяються на компресійні, абсорбційні і термоелектричні [15].
Джерелом низькотемпературної теплоти для ТПУ може бути природна теплота зовнішнього повітря, ґрунту, теплові відходи промислового і сільськогосподарського виробництва, геотермальна енергія. ТПУ економічно і екологічно вигідно використовувати у виробництві і побуті для опалення і гарячого водопостачання при сучасних цінах на енергоносії, не зважаючи на значні капітальні затрати при їх виготовленні. Хоча ТПУ не отримали в нас широкого застосування, із-за значних витрат і складності обладнання, але вони є дуже перспективними, оскільки дозволяють утилізувати практично будь-яку низькотемпературну теплоту. Практика показала, що найбільш ефективними на сьогодні є парокомпресійні тепло помпові установки.
Коефіцієнт корисної дії тепло помпової установки враховує не тільки дроселювання, але і втрати в трубопроводах, в обладнанні при перетворенні первинної енергії в приводному двигуні і передачі її до двигуна. Так, в даному випадку, при використанні електричної енергії для роботи ТПУ визначити ККД її можна з виразу:
, (2.1)де
- теплота, передана в конденсаторі; - робота стискування в компресорі від тиску до ; - коефіцієнт корисної дії теплового потоку, який враховує втрати енергії і робочого агента в трубопроводах і обладнанні ТПУ; - електромеханічний коефіцієнт корисної дії двигуна і компресора; - коефіцієнт корисної дії джерела, яке виробляє додаткову електроенергію; - коефіцієнт корисної дії електричних ліній передач.Для теплових насосів [17], що споживають електричну енергію, основною величиною, яка характеризує їх енергетичну ефективність є коефіцієнт перетворення
- відношення отриманого для обігріву тепла до затраченої роботи : . (2.2)В більшості випадків теплові помпи використовують для опалення приміщення із значенням
в межах від 2 до 3. Це означає, що на кожну кілокалорію затраченої роботи з допомогою теплового насосу отримують 2 – 3 кілокалорії тепла при температурі необхідній для опалення. Коли тепловий насос повинен незначно підняти температуру теплоносія (наприклад, випарні установки), коефіцієнт перетворення збільшується до 10 і вище.Теплові помпи – це складні технічні установки. Строк окупності теплового насосу незначний, він коливається від 2 до 3 років у залежності від конкретних умов. Треба також зазначити, що СПТ вимагають точного підрахунку низькотемпературного джерела енергії, визначення кількості тепла для корисного споживання і механічної енергії для роботи помпи. Низькотемпературним джерелом звично застосовують ґрунт прилеглої ділянки, а також зовнішнє повітря [6].
Помпи тепла на сучасному етапі є найдешевшим джерелом тепла для обігрівання приміщень і гарячого водопостачання, тепловий насос постачає у 3 – 5 разів більше енергії, ніж витрачає[6].
2.9.2 Область використання теплових насосів
В якості природного джерела тепла для зимового опалення ґрунт використовують все частіше ніж повітря та воду, хоча загальне число таких теплових насосів ще порівняно невелике.
Дослідження показали, що умови теплопередачі в ґрунті залежать головним чином від його вологості [10].
Дуже важливим є велика ємкість джерела тепла низького потенціалу. При малій ємності приходиться знижувати температуру кипіння речовини для отримання достатньої кількості тепла від теплоносія. При цьому температура теплоносія помітно змінюється в процесі теплообміну, в той час як температура кипіння лишається постійною низькою.
2.9.3 Конструктивна схема компресійного теплового насоса
Практика зарубіжних країн, а також наших регіонів показує, що найбільш ефективними є на сьогодні є компресійні теплові насоси [17].
Компресійний тепловий насос складається з послідовно розташованих постачального насоса, контуру теплоносія, випарника, компресора та конденсатора, приєднаного через дросель з випарником. Постачальний насос качає теплоносій із оточуючого середовища в випарник, в якому міститься холодоагент, холодоагент відбирає від теплоносія тепло та надходить до компресора, в якому за рахунок стиснення його температура підвищується до температури вище температури конденсації. З компресора холодоагент надходить до конденсатора, в якому за рахунок конденсації холодоагент, надходить через дросель, у якому він розширюється та охолоджується нижче температури оточуючого середовища, в випарник.
Компресійний тепловий насос включає в себе постачальний насос, контур теплоносія, випарник, компресор та конденсатор; виконаний у вигляді 2n секцій , де n- 1, 2, 3 ,..., кожна з котрих складається з поєднаних між собою камер випарника, компресора та конденсатора, в поршні компресора розташовані ( n) клапанів, причому камери випарника та конденсатора поєднані через введення між ними гідроагрегату. Так як камера випарника безпосередньо об'єднана з тим об'ємом камер компресора, в якому відбувається розширення, то робота по тиску насиченого пару в камері компресора менше ніж у компресорі прототипу, а це приводить до збільшення ексергійного ККД теплового насоса. Крім того, оскільки дно камери конденсатора розташовано вище дна камери випарника насичений пар холодоагенту конденсуючись в конденсаторі здобуває додатково гравітаційну потенціальну енергію, яка в гідроагрегаті перетворюється у електроенергію, яка використовується для роботи компресора за рахунок чого, збільшується ексергійний ККД теплового насоса.
2.9.4 Робоче тіло теплових насосів
В якості робочого тіла теплового насоса можуть бути виконані речовини (суміші), які мають основні властивості [14]:
низьку нормальну (при атмосферному тиску) температуру випаровування з тим, щоб процес випаровування при підводі низько потенціальної теплоти (в області значень температур навколишнього середовища) проходив при тиску дещо перевищуючим атмосферний, для виключення можливості підсосу повітря в контур робочого тіла;
невисокий тиск конденсації при необхідній температурі нагріву з метою знизити вимоги до конструкції компресора, яка визначається степеню стиску; гнучкі вимоги до компресора, конденсатора, охолодника конденсатора і з'єднувальних провідників, зменшення втрати енергії, яка залежить від наближення параметрів конденсації до критичних параметрів;
високу теплоту пароутворення в робочому інтервалі температур, що обумовлює високі значення тепло виробництва і коефіцієнт перетворення;
не токсичність, незапалюваність, вибухонебезпечність;
високу хімічну стабільність, хімічну інертність по відношенню до конструктивних матеріалів і змащувальних матеріалів.
За робоче тіло приймаємо аміак, оскільки цю речовину цілеспрямовано використовувати тільки в тих випадках, коли необхідне тепло невисокого потенціалу, так як вже при 60˚С тиск конденсації рівний 26.92 amм. При більш високих температурах конденсації температура кінця стиску може перевищити температуру спалаху масла.
Для використання аміаку в системах для виробництва тепла спеціально підвищують тиск конденсації чи пристроюють додаткову, так звану тепло насосну, ступінь стиску речовини.
2.9.5 Грунт як джерело низько потенційної теплової енергії
Як джерело низько потенційної теплової енергії можуть використовуватися підземні води з порівняно низькою температурою або ґрунт поверхневих (завглибшки до 400 м) шарів землі. Тепломісткість ґрунтового масиву в загальному випадку вища. Тепловий режим ґрунту поверхневих шарів землі формується під дією двох основних чинників – падаючої на поверхню сонячній радіації і потоком радіогенного тепла із земних надр. Сезонні і добові зміни інтенсивності сонячної радіації і температури зовнішнього повітря викликають коливання температури верхніх шарів ґрунту. Глибина проникнення добових коливань температури зовнішнього повітря і інтенсивності падаючої сонячної радіації залежно від конкретних ґрунтово-кліматичних умов коливається в межах від декількох десятків сантиметрів до півтора метра. Глибина проникнення сезонних коливань температури зовнішнього повітря і інтенсивності падаючої сонячної радіації не перевищує, як правило, 15–20 м.