Третья глава посвящена решению задачи теплообмена в нулевом и первом приближениях. Для получения решений использован метод интегральных преобразований Лапласа–Карсона. Получено решение задачи теплообмена в нулевом приближении. Рассмотрены условия, позволяющие упростить задачу в нулевом и первом приближении, оценена погрешность асимптотического приближения.
Рассмотрены две группы задач, соответствующих практически важным случаям. Первая соответствует нахождению температурного поля в процессе закачки кислоты в пласт. Вторая описывает температурные поля после мгновенной закачки, когда основные процессы взаимодействия кислоты со скелетом происходят после прекращения движения раствора в пласте.
Найдены аналитические решения смешанных трехслойных краевых задач сопряжения со следами производных из внешних областей и дополнительным интегральным условием для нулевого и первого коэффициентов асимптотического разложения. Эти решения представляют формулы для расчетов температурных полей в пласте и окружающих породах в нулевом и первом приближениях. Показано, что в частном случае из нулевого приближения следуют известные решения, которые были построены ранее М.А.Пудовкиным, Л.И. Рубиншейном, Х.А. Ловерье и др. в предположениях «схемы сосредоточенной емкости». Поэтому полученное решение рассматриваемой задачи даже в нулевом приближении является более общим, чем все построенные ранее. Первое приближение, рассмотренное в следующем разделе, вообще ранее не было известно. Это доказывает, что построенные решения являются новыми.
Проанализированы результаты расчётов пространственно-временных распределений концентраций кислоты и температурных полей в глубоко залегающих пористых пластах. На основе приведенных решений осуществлены расчеты химико-гидродинамических и температурных полей при различных коэффициентах реакции a(m). На рис. 2 показана зависимость плотности кислоты и пористости от безразмерного времени a0td (td – размерное время). Расчеты проводились при следующих значениях параметров: rs=2930 кг/м3, ra0=212.5 кг/м3, m0=0.15, k=0.73. Из рис. 2 видно, что с течением времени плотность закачиваемой кислоты падает, а пористость возрастает.
Для реакции первого порядка скорости изменения пористости при малых ее значениях и плотности кислоты минимальны для случая, когда коэффициент реакцииопределяется по формуле
, соответствующей случаю сферических полостей в начальном и в конечномРис. 2. Зависимость плотности кислоты ra и пористости m от времени для реакции первого порядка: 1 – ; 2 – ; 3 – |
состояниях (кривая 3); в то же время кривые 1 и 2 практически совпадают. Характерное безразмерное время процесса здесь составляет a0td ≈ 3. В остальных случаях характерное время реакции меньше; в частности, для реакции второго порядка оно составляет a0td ≈ 0.1. С учетом влияния ингибиторов соответствующие характерные времена возрастают. Из рис. 2 также следует, что изменение пористости при одном цикле закачки составляет приблизительно 2%; с увеличением начальной пористости соответствующие ее приращения возрастают.
Из вышеизложенного следует, что значительные изменения пористости достигаются только многократными закачками кислоты. На рис. 3 приведена зависимость конечной пористости от числа закачек. Например, при начальной пористости 10% необходимо 24 цикла закачки кислоты для полного разрушения карбонатного скелета.
Рис. 3. Зависимость пористости m от числа закачек N при различных ее начальных значениях m0: 1 – m0=0.1; 2 – 0.15; 3 – 0.2; 4 – 0.25 |
Важной для практического использования является так называемая критическая пористость m=0.910, которая соответствует случаю, когда однократная закачка соляной кислоты с максимальной плотностью ra0=212.5 кг/м3 полностью разъедает карбонатный пласт. Это означает, что при меньших пористостях в результате однократной закачки кислоты скелет не может быть растворен полностью.
Для использования термических измерений при контроле кислотной обработки пластов важно знать величину максимальной температурной аномалии, обусловленной кислотным воздействием без учета теплообмена пласта с окружающими породами (рис. 4).
Рис. 4 Зависимость максимальной величины термоаномалии DT однократного кислотного воздействия от начальной пористости m0 – а и плотности закачиваемой кислоты ra0 – б: а) 1 – ra0 =212.5 кг/м3; 2 – 150; 3 – 100; 4 – 50; 5 – 20; б) 1 – m0= 0.1; 2 – 0.2; 3 – 0.5; 4 – 0.91; 5 – 0.95; 6 – 0.98 |
Из рис. 4а следует, что максимальная величина термоаномалии достигается при пористости m=0.91 и плотности закачиваемой кислоты в растворе ra0=212.5 кг/м3 и соответствует DT=53.9 K. Расчеты произведены при следующих значениях параметров: M=0.1 кг/моль (СаСО3); rs=2930 кг/м3, cs=1.67·106 Дж/(К×м3), сw=4.19·106Дж/(К×м3), rw=1000 кг/м3, L = 830 кДж/кг. Зависимость величины термоаномалии от плотности закачиваемой кислоты – линейная (рис. 4, б). При начальной пористости выше критическойm>0.91 на кривых имеются участки, когда с ростом плотности кислоты температура достигает максимального значения и при дальнейшем повышении плотности остается неизменной; физически это соответствует полному растворению скелета.
На рис. 5 представлены пространственно-временные зависимости температурной аномалии, обусловленной взаимодействием кислоты со скелетом, на оси скважины (r= 0). Расчеты произведены при lz2=lz1, az2=az1 в нулевом и первом приближениях. Предполагалось также, что радиальные размеры зоны реакции значительно превышают толщину пласта R >> h. В противном случае расчеты производились с учетом радиальной теплопроводности. На рис. 5, а изображена зависимость относительной температуры T от безразмерного времениt(числа Фурье Fo). Из рисунка следует, что процесс изменения температуры завершается при безразмерных временах t ≈ 2.
На рис. 5, б приведены зависимости относительной температуры T от безразмерной координаты z при различных безразмерных временахtв нулевом приближении, соответствующем усредненному по толщине пласта значению температуры. Кривые на рисунке позволяют определить размер зоны возмущения температуры, толщина которой приблизительно в два раза превышает толщину пласта. На рис. 5, в осуществлено сопоставление температурных кривых в первом (кривая 1) и нулевом (кривая 2) приближении при безразмерном времени t ≈ 0.3. Сравнение этих кривых показывает, что в нулевом приближении температура в интервале пласта не зависит от z; первое приближение уточняет распределение температуры, поскольку более детально описывает ее зависимость от координаты z в интервале пласта.
Для нулевого приближения в интервале пласта
температура постоянна, как и должно быть в соответствии со «схемой сосредоточенной ёмкости». Первый коэффициент разложения в пределах пласта принимает как отрицательные, так и положительные значения. Благодаря учету поправки, решение в первом приближении более реально отражает распределение температуры в пласте, что выражается в его зависимости от z. Из графиков видно, что в центральной части пласта нулевое приближение описывает распределение температуры с недостатком, а по краям – с избытком. В окружающих средах нулевое приближение всегда даёт избыточное значение температуры.Рис. 5. Пространственно-временные распределения относительной температуры T: а) зависимость температуры в нулевом приближении в пласте от безразмерного времени t (числа Фурье); б) зависимость температуры в нулевом приближении от безразмерной координаты zпри различных значениях безразмерного времени (1 – t = 0.1; 2 – 0.5; 3 – 1; 4 – 1.2; 5 – 1.6); в) сопоставление первого (кривая 1) и нулевого (кривая 2) приближений приt = 0.3 |
Из рис. 5в следует также, что нулевое приближение описывает температурные поля в указанных условиях с точностью, достаточной в большинстве практических случаев.
Произведено сопоставление полученных результатов с теоретическими результатами других исследователей и с экспериментальными данными.