тому дорівнює нулю і реактивна потужність кола:
Реактивні потужності, індуктивності та ємності відрізняються від нуля, рівні за значеннями, але протилежні за знаком:
.Відношення реактивної потужності QL або Qc до потужності, яка втрачається в колі, називають добротністю контуру і позначають літерою Q:
де
— характеристичний опір контура.Величину, зворотню добротності, називають затуханням контура і позначають літерою
.Вектори напруги на індуктивності UL=Iј
L і ємності Uc=–Iј c при резонансі однакові за значеннями і протилежні за напрямком. Тому вони компенсують один одного, і напруга на вході кола дорівнює падінню напруги на активному опорі: U=Ir. Векторна діаграма для цього випадка показана на мал.8.2.Напруги на реактивних елементах при резонанасі можуть значно перевищувати вхідну напругу. Тому резонанас в нерозгалуженому колі називають резонанасом напруги.
При резонансі відношення напруги на індуктивності чи ємності до вхідної напруги є добротністю контура:
.Характеристичні опори контурів можуть мати значення від кількох десятків до сотен Ом, а опір втрат r – кілька Ом, тому добротність коливальних контурів, які застоствують в радіотехніці, може досягати кількох сотен одиниць. У стільки ж разів напруги на реактивних елементах будуть перевищувати вхідну напругу.
При зміні частоти вхідної напруги змінюється реактивний опір кола
, тобто, будуть змінюватись струм, напруги на елементах та кут зсуву фаз між струмом та вхідною напругою. Залежності струму, напруги на елементах і кута зсуву від частоти вхідної напруги при незмінній його амплітуді називають частотними характеристиками контура.Коли резонанс в колі досягається зміною параметрів L або С (при фіксованій частоті джерела напруги), залежності струму в контурі і напруг на індуктивності і ємності від L або С називаються настроєчними кривими (мал.8.3).
Настроєчні криві, як і частотні характеристики будуються при сталій вхідній напрузі.
Якщо резонанас в колі досягається зміною ємності С, при ємностях, менших резонанасної, реактивний опір кола має ємний характер, тобто кут зсуву фаз в колі φ<0 (див.(8.5)).
Зменшуючись по модулю із збільшенням ємності, він стає рівним нулю при резонансі, а потім змінює знак і збільшується з подальшим збільшенням ємності, прагнузі до значення
.На практиці резонанас напруг використовується головним чином в радіотехніці – для збільшення напруг, а також в електричних фільтрах, коли бажано пропустити струм певної частоти.
Порядок виконяння роботи
1. Зібрати коло згідно мал.8.4, де V1–вольтметр на 60В; V2, V3–вольтметри на 75-150В; W–ватметр на 1-2 А і 75В; С–змінна ємність (знаходиться на стенді); rL, L–котушка індуктивності (1200 віт).
2. Встановити напругу на вході кола U1=25В. Реостата вивести. Змінюючи ємність, встановити в колі резонанс напруг (по найбільшому показанню амперметра). Результати вимірів звнести до табл.8.1.
3. З’ясувати залежність добротності кола від опору. Для двох значень опору реостата – середньому та повному (при резанансному значенні ємності конденсатора) зняти показання приладів і занести в табл.8.1.
4. Підтримуючи з допомогою ЛАТРа сталу напругу на вході кола U1=25В, вивести реостата r і зняти показання приладів при зміні ємності від нуля до максимального значення (по 5-7 точок до і після резонанасу), змінюючи ємність через 1-2мкФ, а біля резонансу – через 0,25-0,5мкФ.
Результати вимірів занести в табл.8.1.
Обробка результатів досліду
1. За даними вимірів обчислити величини згідно табл.8.1, вважати опір rc=0.
2. За даними вимірів та обчислень побудувати на одному малюнку залежності:
I=f(С), Uкат=f(С), UL=f(С), Uc=f(С), φ=f(С), P=f(С).
3. Побудувати в масштабі три векторні діаграми струму та напруги: до резонансу С<С0, в момент резонансу С=С0 та після резонансу С>С0.
4. Обчислити добротність контуру при резонансі для усіх значень опору реостату.
5. Зробити висновки по роботі.
Контрольні питання
1. Який режим роботи кола називають резонансним?
2. Як дослідним шляхом досягти резонансу в колі С послідовно з’єднаними котушкою індуктивності і конденсатором?
3. Від чого залежить добротність контура, резонанасна частота контура?
4. Як аналітично записати умову резонансу в колі в загальному випадку?
5. Як знайти вираз ω0 для розгалуженого кола?
Література:
[ 1, c.120; 2, c.105; 3, c.116; 4, c.262; 5, c.147 ].
Лабораторна робота №9
РЕЗОНАНС СТРУМІВ
Мета роботи: дослідити електричний резонанс в лінійному колі синусоїдного струму з паралельним з’єднанням котушки індуктивності і конденсатора.
Теоретичні положення
На мал.9.1 зображено коло з паралельним з’єднанням котушки з втратами і конденсатором, яке називають паралельним коливальним контуром.
Повну вхідну провідність кола позначають виразом
,де g та b — відповідно активна та реактивна провідності кола:
.За визначенням резонансу умова резонансу запишеться:
. (9.1)Звідки знаходять резонансну частоту:
,де
—характеристичний опір контура; —резонансна частота при відсутності втрат в контурі.При наявності умови резонансу повна вхідна провідність контура y=g і вхідний струм співпадає по фазі з вхідною напругою. Векторна діаграма кола (мал.9.1) при резонансі показана на мал.9.2.
Маючи умову резонансу легко знайти значення струмів у колі (мал.9.1) в стані резонансу:
(9.2)З останнього виразу ясно, що при ρ>>r струми в вітках значно перевищують вхідний струм. Тому резонанс в паралельному коливальному контурі називають резонансом струмів. В практиці відношення
може досягти сотен одиниць і в стільки разів вхідний струм буде менший струмів у вітках.При резонансі реактивні потужності котушкиі конденсатора рівні за значенням і протилежні за знаком :
,тому реактивна потужність всього кола дорівнює нулю. Потужність, яка втрачається в котушці при резонансі,
.Величину, яка показує, в скільки разів реактивна потужність котушки або конденсатора при резонансі більша потужності яка втрачається в контурі, називають добротністю контура і позначають літерою Q –
.Якщо
, то і струм на вході при резонанасі приблизно в Q раз менше струмів у вітках.Стану резонансу в колі, як це очевидно із умови резонансу (9.1), можна досягти зміною частоти ω, або параметрів кола r, L, С. Залежності струмів у колі (мал.9.1) від частоти і параметрів кола визначають виразами:
, С , .В практиці, як правило, настройку контурів в резонанс здійснюють з допомогою зміни ємності, оскільки ємність можна легко змінювати в широких межах.
З виразу (9.2) витікає, що при настройці контура в резонанс з допомогою зміни ємності вхідний струм в стані резонансу буде мінімальним, також мінімальною буде активна потужність, яку споживає контур.
Порядок виконання роботи
1. Зібрати коло згідно мал.9.3, використовуючи наступні прилади: вольтметр на 75-150В, фазометр на 5А, 127В, амперметри на 1-2А. Конденсатор змінної ємності знаходиться на стенді. Котушку індуктивності взяти у лаборанта.
2. На вхід кола подати напругу 50В, і змінюючи ємність, досягти в колі резонансу струмів.
Результати вимірювання занести до табл. 9.1.
3. Підтримуючи за допомогою ЛАТРа сталу напругу на вході кола (яка встановлена в п.2), змінювати ємнічть від нуля до максимального значення (по 5-7 точок до і після резонансу ) через 1-2мкФ, а поблизу резонанса через 0,25-0,5 мкФ. Результати вимірювання занести до табл. 9.1.
Обробка результатів досліду
1. За даними вимірів розрахувати величини наведені в табл.9.2, вважаючи, що активний опір конденсатора дірівнює нулю.
2. На підставі даних вимірів і обчислень побудувати на одному малюнку залежності I=f(C), I1=f(C), I2=f(C), P=f(C), φ=f(C), cosφ=f(C).