Смекни!
smekni.com

Теория распространения волн (стр. 1 из 4)

ОГЛАВЛЕНИЕ

1.Формулировка задачи исследования. 2

2. Исходные положения и допущения. 2

3. Исходная система основных уравнений. 2

4. Преобразование исходной системы уравнений к расчётной форме. 3

4.1 Зависимость длины волны от скорости распространения. Механизмы возникновения волн на свободной поверхности жидкости. 3

4.2 Зависимость между групповой скоростью волн и скоростью их распространения. 8

4.3 Распространение волн на неглубокой воде. 11

5. Численный пример расчёта с использованием полученных расчётных уравнений. 13

6. Анализ полученных теоретических результатов. 14

7. Список литературы. 14


Формулировка задачи исследования.

Для любых механических волн одними из важнейших характеристик являются длина волны и скорость её распространения.

Задача данного исследования – проследить зависимости этих величин друг от друга на примере волн, возникающих на свободной поверхности жидкостей, рассмотреть процесс интерференции волн разной длины, описать механизм их появления и распространения.

2. Исходные положения и допущения.

Рассматриваемая жидкость (вода) принимается несжимаемой, невязкой и идеальной.

В исследовании волновых процессов на свободной поверхности жидкости в качестве жидкости будет рассматриваться вода. Для расчётов потребуются следующие характеристики для воды при обычных условиях:

ρ = 1 г/см3;

С = 72,5 мН/м;

Эти значения будут использованы для количественной оценки выведенных соотношений, но, тем не менее, все формулы будут представлены в общем виде для произвольной жидкости.

Свободная поверхность жидкости соприкасается с воздухом. Волны, образующиеся на свободной поверхности воды, приводят в движение соприкасающийся с ними воздух. Допустим, что массой этого воздуха можно пренебречь по сравнению с массой жидкости. Тогда давление на свободной поверхности воды будет равно атмосферному.

Также принимается, что частицы свободной поверхности воды описывают траектории, совпадающие с окружностью. Здесь имеется в виду траектория частиц в системе отсчёта, движущейся вместе с волнами с их фазовой скоростью с . Такое движение имеет место при отсутствии трения.

3. Исходная система основных уравнений.

Уже введённое допущение о несжимаемости жидкости в математической форме принимает вид:

ρ = const; (3.1)

Закон изменения импульса выражается из уравнения движения в форме Эйлера

; 5(3.2)

Уравнение сохранения энергии в общем виде:

В этом уравнении 5 слагаемых. Они имеют следующий смысл (слева направо):

1) изменение кинетической энергии;

2) работа объёмных сил;

3) работа сил давлений;

4) работа сил трения;

5) внешняя механическая работа.

Учитывая допущения параграфа 2, четвёртый член обнуляется (отсутствие трения). Уравнение принимает вид:

(3.3)

Уравнение неразрывности запишется в виде:

,

, (3.4)

где δσ – элемент поперечного сечение трубки тока в каком-либо месте, Vn - средняя скорость в

этом сечении, ρ=const - плотность жидкости (жидкость несжимаема – смотри §2).

Уравнения 3.1-3.4 являются исходными для проведения исследования. На них опираются все дальнейшие доказательства и выводы.


4. Преобразование исходной системы уравнений к расчётной форме.

4.1 Зависимость длины волны от скорости распространения. Механизмы возникновения волн на свободной поверхности жидкости.

Как было принято в пункте 2, движение частиц свободной поверхности в системе отсчёта, двигающейся с фазовой скоростью волны (с абсолютной скоростью движения гребней волн), происходит по траекториям, близким к окружностям. В указанной системе отсчёта движение является установившимся (см. рис. 4.1).

Пусть фазовая скорость с, радиус окружности, описываемой частицей воды, расположенной на свободной поверхности, равен r, а период обращёния этой частицы по своей траектории равен Т. Тогда в неподвижной системе отсчёта скорость течения на гребнях волн будет равна

ω1 = c -

;

а во впадинах волн

ω2 = c +

;

Разность высот между наивысшим (hв) и наинизшим (hн) положениями точек свободной поверхности равна h = hв - hн = 2r.

После ряда допущений в уравнении 3.2 и интегрирования уравнения движения вдоль линии тока получается уравнение сохранения движения в одной из форм уравнения Бернулли. Далее представлен пошаговый вывод с постепенным введением допущений:

Уравнение 3.2 в проекциях на оси координат (при допущении, что среда идеальная и невязкая):

,
;

Этих двух уравнений достаточно для последующего вывода, в них проигнорирована одна из координат y – это допустимо, так как разговор идёт о двухмерном движении. Далее первое уравнение домножается на dx, второе домножается на dz и оба уравнения складываются:

Далее записывается уравнение линии тока (вторым допущением является то, что движение происходит только вдоль линии тока):

, откуда
. Это допущение позволяет группу слагаемых из левой части суммарного уравнения представить в виде

.

Действительно,

.

Далее поле внешних сил принимается потенциальным (вообще говоря, в нашем случае это поле сил тяжести). Это означает, что существует такая силовая функция U, для которой

и
.

Тогда

(первая скобка в правой части суммарного уравнения).

Последнее слагаемое суммарного уравнения есть не что иное, как

- полный дифференциал давления P, делённый на плотность. Самая первая скобка суммарного уравнения в векторном виде запишется как
. Теперь, когда все слагаемые рассмотрены, можно переписать суммарное уравнение в упрощённом виде:
. Дальнейшие упрощения приводят к обнулению первого члена этого уравнения, т. к. для установившегося течения
. Теперь, ещё раз вспомнив о потенциальности поля сил тяжести, можно записать
,
.

Это значение подставляется в полученное дифференциальное уравнение, после чего последнее интегрируется вдоль линии тока:

,

.

Жидкость несжимаема (ρ=const), поэтому

.

Получилось уравнение

+
=
+
;

Применительно к рассматриваемой задаче

, здесь давления сократились, т. к. согласно допущению, принятому в параграфе 2, во всех точках свободной поверхности давление равно атмосферному.

ω22 – ω12 = hв – hн = 2gh = 4gr,

после подстановки вместо ω2 и ω1 их значений, получается:

(c +

)2 - (c -
)2 = 4gr,

. (4.1)

Радиус r в эту формулу не вошёл, следовательно, фазовая скорость волн (скорость распространения волн) не зависит от высоты волн. Гребень волны продвигается за время Т на расстояние λ, называемое длиной волны, следовательно,

.

Подставим это значение в формулу 4.1: