Смекни!
smekni.com

Теорія електричних і електронних кіл (стр. 3 из 10)

Включити схему за допомогою перемикача, або, натиснувши на клавіатурі Ctrl+G. Дочекатися появи зображення на екрані віртуального осцилографа і замалювати осцилограми вхідної напруги і струму конденсатора. Вимкнути схему, натиснувши на клавіатурі Ctrl+Т.

Визначити параметри змальованих сигналів (амплітуду, тривалість, період). За осцилограмами визначити тривалість перехідного процесу у досліджуваному ланцюзі і розрахувати постійну часу досліджуваного ланцюга. Приклад осцилограми (на екрані віртуального осцилографа) приведено на рис. 1.17.

5. Перевести ключ К4 у верхнє (за схемою) положення, що дає можливість спостерігати осцилограми напруги на конденсаторі С1 досліджуваного ланцюга.

Включити схему і, дочекавшись появи зображення на екрані віртуального осцилографа, замалювати осцилограми вхідної напруги і напруги на конденсаторі С1.

Визначити параметри змальованих сигналів (амплітуду, тривалість, період). За осцилограмами визначити тривалість перехідного процесу у досліджуваному ланцюзі і розрахувати постійну часу досліджуваного ланцюга. Приклад осцилограми приведено на рис. 1.18.

6. Для дослідження RL-ланцюга встановити ключ К2 у положення, що забезпечує це дослідження, а ключ К4 - у нижнє (за схемою) положення, яке забезпечує вимір струмів схеми.

Включити схему і, дочекавшись появи зображення на екрані віртуального осцилографа, замалювати осцилограми вхідної напруги і струму котушки.

Визначити параметри змальованих сигналів (амплітуду, тривалість, період). За осцилограмами визначити тривалість перехідного процесу у досліджуваному ланцюзі і розрахувати постійну часу досліджуваного ланцюга. Приклад осцилограми приведено на рис. 1.19.

7. Перевести ключ К4 у верхнє по схемі положення, що дає можливість спостерігати осцилограми напруги на котушці індуктивності L1 досліджуваного ланцюга.

Включити схему і, дочекавшись появи зображення на екрані віртуального осцилографа, замалювати осцилограми вхідної напруги і напруги котушки досліджуваного ланцюга. За осцилограмами визначити тривалість перехідного процесу у досліджуваному ланцюзі і розрахувати постійну часу досліджуваного ланцюга. Приклад осцилограми приведено на рис. 1.20.

3.5 Зміст звіту

До звіту заносять:

- тему та мету роботи;

- принципову схему електричного кола, яке аналізується;

- епюри струмів і напруг на окремих ділянках ланцюга досліджуваних схем;

- розрахунки тривалості перехідних процесів;

- висновки по роботі.

3.6 Контрольні питання

1. Які елементи ланцюгів називають реактивними?

2. Від яких параметрів ланцюга залежить швидкість зміни струму в ланцюги і напруги на окремих її ділянках?

3. Фізичне поняття тривалості часу перехідного процесу у ланцюзі з реактивними елементами.

4. Фізичне поняття «постійної часу ланцюга» з реактивними елементами.

5. Визначення постійної часу rL - ланцюга і вплив величини опору на тривалість перехідного процесу.

6. Визначення постійної часу ланцюга графічно і аналітично.

7. Диференціюючи ланцюги і фізичний сенс процесів, що відбуваються в них.

8. Інтегруючи ланцюги і фізичний сенс процесів, що відбуваються в них.

9. 5. Визначення постійної часу rС - ланцюга і вплив величини опору на тривалість перехідного процесу.

10. Визначити умову, при якій rC-ланцюг є диференціюючим.

11. Визначити умову, при якій rC-ланцюг є інтегруючим. Вибір r і С інтегруючого ланцюга.

12. сформулюйте закони комутації.


Лабораторна робота 2

дослідження перехідних процесів в лінійних ланцюгах другого порядку

1.1 Мета роботи:

експериментальне дослідження перехідного процесу в ланцюзі з послідовним з'єднанням RLC- елементів при включенні її в ланцюг постійного струму.

1.2 Зміст роботи:

для заданого електричного кола (рис.2.1):

- встановити задані (за варіантами) параметри елементів;

- скласти характеристичне рівняння та знайти його коріння;

- по результатам рішення визначити вид перехідного процесу в досліджуваному ланцюзі;

- провести необхідні вимірювання величин струмів та напруги (табл. 2.2);

- зарисувати епюри струмів та напруги на елементах досліджуваного ланцюга;

1.3 Теоретичні відомості:

аналізу перехідного процесу електричного кола другого порядку.

При всіх змінах в електричному ланцюзі: включенні, виключенні, короткому замиканні, коливаннях величини якого-небудь параметра і т.п. - в ній виникають перехідні процеси, які не можуть протікати миттєво, оскільки неможлива миттєва зміна енергії, яка запасена в електромагнітному полі ланцюга. Таким чином, перехідний процес обумовлений невідповідністю величини запасеної енергії в магнітному полі котушки і електричному полі конденсатора її значенню для нового стану ланцюга.

При перехідних процесах можуть виникати великі перенапруження, надструми, електромагнітні коливання, які можуть порушити роботу пристрою аж до виходу його з ладу. У інших випадках, перехідні процеси знаходять корисне практичне застосування (у різних електронних генераторах). Все це обумовлює необхідність вивчення методів аналізу нестаціонарних режимів роботи ланцюга.

Основні методи аналізу перехідних процесів в лінійних ланцюгах:

1. Класичний метод, що полягає в безпосередній інтеграції диференціальних рівнянь, які характеризують електромагнітний стан ланцюга.

2. Операторний метод, що полягає в рішенні системи рівнянь, алгебри, щодо зображень шуканих змінних з подальшим переходом від знайдених зображень до оригіналів.

3. Частотний метод, що заснований на перетворенні Фур'є і знаходить широке застосування при рішенні задач синтезу.

4. Метод розрахунку за допомогою інтеграла Дюамеля, використовуваний при складній формі кривої збуджуючої дії.

5. Метод змінних стану, що є впорядкованим способом визначення електромагнітного стану ланцюга на основі рішення системи диференційних рівнянь першого порядку, записаних в нормальній формі (формі Коші).

Оскільки короткий виклад всіх вище перелічених методів скрутно, нижче приведено короткий опис тільки класичного методу аналізу.

Класичний метод розрахунку

Класичний метод розрахунку перехідних процесів полягає в безпосередній інтеграції диференціальних рівнянь, які характеризують зміни струмів і напружень на ділянках ланцюга в перехідному процесі.

У загальному випадку при використанні класичного методу розрахунку складаються рівняння електромагнітного стану ланцюга по законах Ома і Кірхгофа для миттєвих значень напружень і струмів, зв'язаних між собою на окремих елементах ланцюга співвідношеннями:

для резистора (ідеальний активний опір)

(2.1)

для котушки індуктивності (ідеальна індуктивність)

(2.2)

для конденсатора (ідеальна місткість)

(2.3)

Для послідовного ланцюга, що містить лінійні резистор R, котушку індуктивності L і конденсатор С, при її підключенні до джерела з постійною напругою u (рис. 1.1) можна записати

(2.4)

Диференціюючи цей вираз одержимо лінійне диференціальне рівняння другого порядку

. (2.5)

Порядок даного рівняння рівний числу незалежних накопичувачів енергії в ланцюзі. Під ними розуміються котушки індуктивності і конденсатори в спрощеній схемі, яка одержується з початкової шляхом об'єднання індуктивностей і відповідно ємностей елементів, з'єднання між якими є послідовними або паралельними.

У загальному випадку порядок диференціального рівняння визначається співвідношенням

(2.6)

де

и
- відповідно число котушок індуктивності і конденсаторів після вказаного спрощення початкової схеми;
- число вузлів, в яких сходяться тільки гілки, що містять котушки індуктивності (відповідно до першого закону Кірхгофа струм через будь-яку котушку індуктивності в цьому випадку визначається струмами через решту котушок);
- число контурів схеми, гілки яких містять тільки конденсатори (відповідно до другого закону Кірхгофа напруга на будь-якому з конденсаторів в цьому випадку визначається напругою на інших).

Наявність індуктивних зв'язків на порядок диференціального рівняння не впливає.

У рішенні рівняння (2.5) класичним методом примушена складова струму відсутня а форма запису вільної складової струму залежить від виду коріння характеристичного рівняння яке виходить шляхом заміни

на р2 ,
- на р і р0 = 1.

LP2+RP+1/C=0 (2.7)

коріння цього характеристичного рівняння визначається як

Р1,2=

(2.8)

Позначивши

Одержимо

Р1,2=

(2.9)Залежно від співвідношення и 0 можливі три випадки:а)  > 0 , т.е.
(аперіодичний процес).У площині комплексного змінного коріння характеристичного рівняння лежить на речовинній осі Напруга на елементах UR=Ri=
p1tp2t),UL=L
=
(P1еp1t-P2еp2t),UC=E-UR-UL=E[1+ (P2еp1--P1еp2t)].

Графіки залежностей UR, UL, UC від часу приведені (рис.2.3).