На рис 4.1 представлена ВАХ діода i(U) при дії на нього гармонійної напруги U(ωt)
На рис 4.1 видна характерна реакція нелінійного елементу (діода) на вхідну дію. Струм, що протікає в ланцюзі нелінійного елементу (діода) виявляється несинусоїдальним, причому його спектр містить постійну складову, основну (з частотою ωt), а також вищі гармоніки.
Явно видно (рис 4.1) що амплітуда позитивної півхвилі струму в ланцюзі діода значно більше, ніж негативна. Різниця цих амплітуд тим більше, чим більше амплітуда сигналу джерела напруги живлячого ланцюг діода. Часто відмінність величин амплітуд струмів позитивної і негативної півхвиль тих, що протікають через діод настільки велика, що струмом негативної півхвилі можна нехтувати. В цьому випадку ВАХ реального діода можна замінити характеристикою реального вентиля (показана пунктиром на рис 4.1). Опір ідеального вентиля для позитивній півхвилі напруги, що живить ланцюг дорівнює нулю, а для негативної півхвилі напруги - нескінченно велик.
Пристрої з електричними вентилями, призначені для перетворення змінної напруги в постійне, називаються випрямлячами. Про якість судять по величині коефіцієнта пульсацій КП. Коефіцієнт пульсацій є відношення величини діючого значення змінної складової
на виході випрямляча до його постійної складової. (4.1)Чим менша величина коефіцієнта пульсацій, тим краще якість випрямляння.
Всі випрямляючі схеми можна розділити за основними ознаками:
1. по числу фаз первинної обмотки трансформатора - на однофазні і 3х - фазні;
2. по числу імпульсів струму у вторинній обмотці трансформатора за період - на одне і двонапівперіодні;
3. некеровані і керовані.
Для спрощення аналізу випрямляча заздалегідь розглядатимемо його роботу на чисто активне навантаження, вважаючи трансформатор і вентилі ідеальними. Це означає, що втрати в трансформаторі відсутні, а вентилі мають ідеальну вольт-амперну характеристику. Для правильного вибору трансформатора і вентилів необхідне знання параметрів, якими характеризується робота кожного з елементів випрямної схеми. Заданими є: середні значення випрямленої (вихідної) напруги U0 і струму I0 та необхідний коефіцієнт пульсацій Кп.
Лабораторна робота № 5
Исследование полупроводниковых диодов
5.1 Мета роботи:
вивчити основні властивості, характеристики і параметри напівпровідникових діодів, експериментально досліджувати їх вольт-амперні характеристики (ВАХ).
5.2 Зміст роботи
Для заданого електричного кола (рис. 5.1):
- встановити задані параметри джерела живлення електричного кола;
- провести необхідні вимірювання величин струмів та напруги;
- оцінити похибки вимірювань та зробити висновки щодо режимів роботи ланцюга. При оцінці похибок вимірювань вважати межею вимірювань Iмах = 15мА (для амперметрів), Vмах = 20 В (для вольтметрів); а за клас точності прийняти для всіх приладів δ = 0,1.
5.3 Теоретичні відомості
Основним елементом більшості напівпровідникових приладів є електронно-дірковий перехід (р-n перехід), що є перехідним шаром між двома областями напівпровідника, одна з яких має електронну електропровідність, а інша - діркову.
Розглянемо докладніше процес утворення p-n переходу. Рівноважним називають такий стан переходу, коли відсутня зовнішня напруга. Нагадаємо, що в р- області є два види основних носіїв заряду: нерухомі негативно заряджені іони атомів акцепторної домішки і вільні позитивно заряджені дірки; а в n-області є також два види основних носіїв заряду: нерухомі позитивно заряджені іони атомів акцепторної домішки і вільні негативно заряджені електрони.
До зіткнення p і n областей електрони дірки і іони домішок розподілені рівномірно. При контакті на межі p і n областей виникає градієнт концентрації вільних носіїв заряду і дифузія. Під дією дифузії електрони з n-області переходить в p-область і рекомбінують там з дірками. Дірки з р-області переходять в n-область і рекомбінують там з електронами. В результаті такого руху вільних носіїв заряду в прикордонній області їх концентрація убуває майже до нуля і в теж час в р-області утворюється негативний просторовий заряд іонів акцепторної домішки, а в n-області позитивний просторовий заряд іонів донорної домішки. Між цими зарядами виникає контактна різниця потенціалів φк і електричне поле Ек , яке перешкоджає дифузії вільних носіїв заряду з глибини р- і n-областей через р-n-перехід. Таким чином область, об'єднана вільними носіями заряду з своїм електричним полем і називається р-n-переходом.
P-n-перехід характеризується двома основними параметрами:
1. Висота потенційного бар'єру. Вона рівна контактній різниці потенціалів φк . Це різниця потенціалів в переході, обумовлена градієнтом концентрації носіїв заряду. Це енергія, якою повинен володіти вільний заряд, щоб подолати потенційний бар'єр:
де k – постійна Больцмана; е – заряд електрона; Т – температура; Nа і NД – концентрації акцепторів і донорів в дірковій і електронній областях відповідно; рр і рn – концентрації дірок в р- і n-областях відповідно; ni – власна концентрація носіїв заряду в нелегованому напівпровіднику, т=кТ/е - температурний потенціал. При температурі Т=270С т=0.025В, для германієвого переходу к=0,4В, для кремнієвого переходу к=0,8В.
2. Ширина p-n-переходу (рис.5.2) – це прикордонна область, збіднена носіями заряду, яка розташовується в p і n областях: lp-n = lp + ln:
, звідси ,
де ε – відносна діелектрична проникність матеріалу напівпровідника; ε0 — діелектрична постійна вільного простору.
Товщина електронно-діркових переходів має порядок (0,1-10)мкм. Якщо
, то і p-n-перехід називається симетричним, якщо , то і p-n-перехід називається несиметричним, причому він в основному розташовується у області напівпровідника з меншою концентрацією домішки.У рівноважному стані (без зовнішньої напруги) через р-n перехід рухаються два стрічні потоки зарядів (протікають два струми). Це дрейфовий струм не основних носіїв заряду і дифузійний струм, який пов'язаний з основними носіями заряду. Оскільки зовнішня напруга відсутня, і струму в зовнішньому ланцюзі немає, то дрейфовий струм, і дифузійний струм взаємно врівноважуються і результуючий струм рівний нулю
Iдр + Iдиф = 0.
Це співвідношення називають умову динамічної рівноваги процесів дифузії і дрейфу в ізольованому (рівноважному) p-n-переході.
Поверхня, по якій контактують p і n області називається металургійною межею. Реально вона має кінцеву товщину - δм . Якщо δм<< lp-n , то p-n-перехід називають різким. Якщо δм>>lp-n , тоб p-n-перехід називають плавним.
Р-n перехід при зовнішній напрузі, прикладеній до нього
Зовнішня напруга порушує динамічну рівновагу струмів в p-n-переході. P-n-перехід переходить в нерівноважний стан. Залежно від полярності напруги прикладеного до областей в p-n-переходу можливо два режими роботи.
1) Прямий зсув p-n переходу. Р-n перехід вважається зміщеним в прямому напрямі, якщо позитивний полюс джерела живлення приєднаний до р- області, а негативний до n-області (рис.5.3)
2)
При прямому зсуві, напруги к і U направлені назустріч один одному, результуюча напруга на p-n-переході убуває до величини к - U . Це призводить до того, що напруженість електричного поля убуває і поновлюється процес дифузії основних носіїв заряду. Крім того, пряме зсуві зменшує ширину p-n переходу, оскільки lp-n≈(к – U)1/2. Струм дифузії, струм основних носіїв заряду, стає багато більше дрейфового. Через p-n-перехід протікає прямий струм
Iр-n=Iпр=Iдиф+Iдр Iдиф .
При протіканні прямого струму основні носії заряду р- області переходять в n-область, де стають не основними. Дифузійний процес введення основних носіїв заряду в область, де вони стають не основними, називається інжекцією, а прямий струм - дифузійним струмом або струмом інжекції. Для компенсації не основних носіїв заряду тих, що накопичуються в p і n-областях в зовнішньому ланцюзі виникає електронний струм від джерела напруги, тобто принцип електронейтральності зберігається.
При збільшенні U струм різко зростає, - температурний потенціал, і може досягати великих величин оскільки пов'язаний з основними носіями концентрація яких велика.
2) Зворотний зсув, виникає, коли до р-області прикладений мінус, а до n-області плюс, зовнішнього джерела напруги (рис.1.3).
Така зовнішня напруга U включена послідовно з к . Вона збільшує висоту потенційного бар'єру до величини к + U ; напруженість електричного поля зростає; ширина p-n переходу зростає, оскільки lp-n≈(к + U)1/2 ; процес дифузії повністю припиняється і через p-n перехід протікає дрейфовий струм, струм неосновних носіїв заряду. Такий струм p-n-переходу називають зворотним, а оскільки він пов'язаний з неосновними носіями заряду, які виникають за рахунок термогенерації то його називають тепловим струмом і позначають - I0 , т.е.