Смекни!
smekni.com

Тепловая часть ГРЭС 1000 МВт (стр. 2 из 11)

ПВД и ПНД 205-210 МВт, 98 кгс/см;

Без ПВД 200 МВт, 84 кгс/см;

Без ПНД 184 МВт, 77 кгс/см;

Без ПВД и ПНД 175 МВт, 64 кгс/см.

Номинальная мощность 200 МВт,

Обороты 3000 об/мин.

Давление пара перед турбиной 130 кгс/см2

Температура первичного пара перед турбиной 545оС

Температура пара в контрольной ступени 515оС

Давление пара на выхлопе ЦВД 27 кгс/см2

Температура на выхлопе ЦВД 3450С

Давление пара перед ЦСД 25 кгс/см2

Температура пара перед ЦСД 545оС

Давление пара на выхлопе ЦСД 0,23 кгс/см2

Температура пара на выхлопе ЦСД 207оС

Давление в конденсаторе (абсолютное) 0,035 кгс/см2

Температура отработанного пара 30оС

Температура охлаждающей воды 10оС

Расход охлаждающей воды 25000 м3/час

Максимальный расход пара на турбину 640 т/час

Удельный расход тепла 2000 ккал/квт.час

Основным критерием, определяющим максимальную нагрузку турбины, является давление в контрольной ступени:

При включенных ПВД и ПНД 205-210 МВт 98 кгс/см2,

без ПВД 200 МВт 84 кгс/см2,

без ПНД 184 МВт 77 кгс/см2,

без ПВД, и ПНД 175 МВт 64 кгс/см2.

Паропроизводительность и число паровых котлов блочной ГРЭС выбирается по номинальному пропуску свежего пара через турбину, с учётом расхода пара на собственные нужды. Производительность котла Дпп, т/ч определяем по формуле

Дпп = До×(1+𝑑+β)

где До – номинальный расход пара на турбину, т/ч

До = 640 т/ч по тепловой схеме

𝑑 – запас по производительности, %

β – расход пара на собственные нужды, %

𝑑 + β = 3 %

Дпп = 640×(1+0,03) = 659 т/ч

По полученным результатам для каждой турбины устанавливаю по одному паровому котлу типа ПП 640 – 140 ГМ Подольского машиностроительного завода им. Орджоникидзе имеющие следующие технические характеристики:

Паропроизводительность, т/час……………………………………….640

Давление пара после первичного пароперегревателя, ати…………..140

Температура пара после первичного пароперегревателя, 0С…...…....545

Давление за промперегревателем, ати ………………..………………...26

КПД котла брутто, % ………………………..………………………...92,9

Температура уходящих газов, 0С ………………………………………138

Температура горячего воздуха за воздухоподогревателем, 0С ………220

Температура питательной воды, 0С ……………………………………240

Температура воды за водяным экономайзером, 0С …...………………300

Температура пароводяной смеси за НРЧ, 0С ….......…………………..355

Температура пара за переходной зоной, 0С ………...…………………360

Температура пара за СРЧ-I, 0С …………………………………….....430

Температура пара за СРЧ-II, 0С………………………………………480

Температура пара за ВРЧ-I, 0С …………………………………….....500

Температура пара за КПП-I, 0С …………………………………...….550

Температура первичного пара за ППТО, 0С ………...……………… 460

Температура пара за ВРЧ-II, 0С …………………………………...……530

Температура пара за КПП-II, 0С ……………………………………...545

Расход вторичного пара, т/ч …………………………………………..540

Температура вторичного пара за ППТО, 0С ……..……………………468

Температура вторичного пара за промперегревателем, 0С ….……… 545

Турбина К-200-130 представляет собой одновальный трёх цилиндровый агрегат.

Цилиндр высокого давления одностенной конструкции отлит из хромомолибденованадиевой стали перлитного класса (15ХIМIФ-Л).

Он имеет одиннадцать диафрагм с направляющими лопатками, диафрагмы размещены в трех обоймах (3-5-3 ступеней).

Вес цилиндра без диафрагм 31тонна.

Цилиндр среднего давления одностенной конструкции состоит из двух частей:

- передняя часть отлита из хромомолибденовой стали (15ХIМIФ-Л) с приваренными к ней паровыми коробками,

- выхлопная часть сварной конструкции из листовой углеродистой стали.

Так же он имеет десять диафрагм с направляющими лопатками: 13 ступень - сопловой аппарат,14,15 ступень непосредственно в цилиндре, замет в трех обоймах 16-18, 19-21, 22-23 ступени, горизонтальный разъем и вертикальный.

Вес цилиндра без диафрагм: передняя литая часть 15920 кг, выхлопная сварная часть 15,485 тонны.

Цилиндр низкого давления сварной конструкции, двухпоточный, состоит из трех частей:

- средняя - паровпуск, отлита из чугуна;

- выхлопные - прямого и обратного потока из углеродистой стали сварной конструкции.

Он имеет два потока по четыре диафрагм с направляющими лопатками, горизонтальный и два вертикальных разъема. Вес цилиндра без диафрагм 212 т.

Цилиндры турбин своими лапами установлены на консольные шпонки, которые совместно со стульями подшипников представляют единую базовую жесткость, связывающую турбину с фундаментом. Общая длина турбины составляет 20552 мм.

Геометрическая ось цилиндров обеспечивается наличием направляющих шпонок, определяющих строго определенное направление перемещения цилиндров при их прогреве и остывании.

Турбина имеет комплект поперечных, продольных и вертикальных шпонок.

Фикспункт турбины находится на пересечении диагоналей передней части ЦНД (обратного потока).

Для восприятия крутящего момента ЦВД и ЦСД имеют демпферные устройства, установленные с левой стороны турбины. Новые цилиндры, установленные при замене турбин, демпферных устройств не имеют.

Концевые уплотнения цилиндров состоят из колец, набранные из сегментов, установленных в обоймах на плоских пружинах.

ЦВД со стороны паровпуска имеет 5 камер лабиринтовых уплотнений, со стороны выхлопа - 4 камеры.

ЦСД со стороны паровпуска имеет 4 камеры, а со стороны выхлопа - 3 камеры лабиринтовых уплотнений. ЦНД имеет по 2 камеры лабиринтовых уплотнений.

Отборы.

Турбина имеет 7 нерегулируемых отборов.

№ отбора. за ступенью Ду трубопровода Р кгс/см2 оС расход на регенерацию расход сверх регенерации подогреватель
I 9 150 40 345 26 - ПВД-7
II 12 200 17 345 25 30 ПВД-6
III 15 250 11,5 475 24 13 ПВД-5, ДБ
IV 18 300 6,06 378 24 13 ПНД-4,7,8 ПБ
V 21 300х2 2,64 290 13 20 ПНД-3,7,8 ОБ 8-10 ИСВ
VI 23 450х2 1,23 200 24 14,5 ПНД-2
VII 25 и 29 800-1000 0,25-0,27 77 21 - ПНД-1

На первых (кроме второго) отборах установлены обратные соленойдные клапана.На шестом отборе установлен обратный клапан типа "хлопушка".

На VII отборе арматуры нет.

Котлоагрегат ПК – 47 состоит из двух самостоятельных корпусов, объединённых в тепловой схеме блока одном потребителем. Каждый корпус имеет обычную П – образную компоновку в виде двух вертикальных шахт, объединённых вверху горизонтальной перемычкой.

Пароводяная схема котла состоит из двух самостоятельных контуров, объединённых перемычками после стопорных клапанов турбины.

В соответствии с тепловой схемой питательная вода после подогревателя высокого давления поступает в общую перемычку, от которой распределяется по самостоятельным контурам обоих корпусов котла.

На каждом корпусе вода направляется к водяному экономайзеру и после подогрева в нём, через тройник с двумя отводами поступает к внутренним торцам фронтовой и задней входных камер НРЧ.

В НРЧ на экономайзерном участке происходит подогрев воды до кипения и начинается парообразование.

После НРЧ пароводяная смесь поступает в две выходные камеры (с фронта и сзади топки). От внутренних торцов этих камер отходят трубопроводы, соединяющиеся в тройник, от которого пар поступает в вертикальный раздатчик переходной зоны (ПЗ). Раздатчик соединён десятью трубами с двумя входными камерами ПЗ.

В переходной зоне происходит полное испарение оставшейся влаги и небольшой перегрев пара. При этом часть труднорастворимых солей выпадает на внутренней поверхности нагрева. Это явление наиболее интенсивно происходит в момент наибольшей концентрации их в воде, т.е. перед превращением последних 5-10% воды в пар.

Размещение переходной зоны отдельным “вынесенным” пакетом в область относительно низких температур, то есть в конвективную шахту, имеет цель облегчить условия работы труб при осаждении на внутренней их поверхности солей в виде накипи.

Освобождённый от солей и осушенный пар направляется к наружным торцам входных камер СРЧ-I, расположенных с фронта и сзади топки.

Пройдя СРЧ-I, пар поступает в СРЧ‑II, после в СРЧ-II, от задних торцов выходных камер, пар двумя трубопроводами подводится к торцам выходной камеры ВРЧ-I, расположенный с фронта корпуса. Здесь пар распределяется по трубам верхней радиационной части, экранирующей полностью по всей ширине корпуса фронтовую стену топки и переднюю часть потолка горизонтального газохода и выходит через обмуровку потолка в выходную камеру ВРЧ-I, расположенную поперёк потолочного перекрытия.

От внутреннего торца выходной камеры ВРЧ-I пар поступает по трубопроводу к переднему торцу входной камеры КПП-I. На верхнем горизонтальном участке этого трубопровода установлена встроенная задвижка. Перед задвижкой установлены отвода с дроссельным клапаном к растопочному сепаратору. Наличие этих элементов позволяет в процессе растопки обеспечить в испарительной части котла растопочную нагрузку и давление, близкое к рабочему, то есть условия, необходимые для устойчивой гидродинамики испарительной части котла.

Пройдя конвективный пароперегреватель I ступени, пар направляется к раздающей камере паро-парового теплообменника (ППТО). Его назначение состоит в предварительном подогреве вторичного пара, что позволило уменьшить поверхность нагрева промпароперегревателя и снизить высоту конвективной шахты.