Федеральное агентство по образования и науке РФ
Иркутский государственный технический университет
Кафедра теплоэнергетики
Расчетно-графическая работа
по дисциплине "Анализ теплотехнической эффективности оборудования" на тему:
"Тепловой баланс котла по упрощенной методике теплотехнических расчетов"
Выполнил:
студент гр. ТЭ-06-1
Константинов В.В.
Проверил:
доцент кафедры ТЭ
Картавская В.М.
Полнота передачи располагаемой теплоты топлива в котле к рабочей среде определяется коэффициентом полезного действия (КПД) котла брутто. Коэффициент полезного действия котла брутто можно определить, установив сумму тепловых потерь при его работе [4]:
Такой метод определения называют методом обратного баланса. Погрешность определения КПД методом обратного баланса зависит от точности измерения тепловых потерь котлом. Каждая из них определяется со значительной погрешностью [5]
, но относительная доля тепловых потерь составляет около десятой части общей теплоты топлива.Среднестатистические данные по тепловым потерям q3, q4, q5 приведены в нормативном методе тепловых расчетов, потери теплоты топлива q2, q6 определяются расчетом.
Наибольшее значение из тепловых потерь имеет отвод теплоты из котла с уходящими газами q2. Она составляет q2 = 4,5-12,0%. При сжигании малореакционных твердых топлив (каменный уголь) в зависимости от способа сжигания могут оказаться значительными потери теплоты с механическим недожогом топлива (q4=2-5%). Остальные потери в сумме не превышают обычно 1%.
Целью расчетно-графической работы является определение КПД котла по упрощенной методике теплотехнических расчетов Равича и оценка погрешности его расчетов относительно расчетного.
Составить тепловой баланс котлоагрегата по упрощенной методике теплотехнических расчетов Равича М.Б. и определить КПД котла.
Исходные данные
Доля золы топлива в уносе: аун=0,95;
Содержание горючих в золе-уносе: сун=3 %.
Таблица 1. Техническая характеристика котлоагрегата
Основные сведения | Характеристика | |
Марка котлоагрегата | ГОСТ 3619-69 | Е-50-3,9 |
Заводская | БКЗ-50-3,9 | |
Производительность | т/ч | 50 |
Параметры пара | Давление на выходе Р, МПа | 3,9 |
Температура t, °С | 440 | |
Топливо | Березовскийбурый уголь | |
Расчетный КПД брутто , % | 91,8 | |
Температура уходящих газов, ºС | 145 |
Таблица 2. Расчетные характеристики топлива из [3]
Месторождение | Марка | Элементарный состав на рабочую массутоплива, % | Низшая теплота сгорания , МДж/кг,(ккал/кг) | Выход летучих ,% | ||||||
Березовское | Б2Р | Влажность, WP | Зольность , AP | Сера, SP | Углерод, CP | Водород, HP | Азот, NP | Кислород, OP | 15,67(3740) | 48,0 |
33,0 | 5,4 | 0,26 | 36,3 | 4,3 | 0,6 | 20,2 |
1. Расчет объемов воздуха и продуктов горения
Расчет объемов воздуха и продуктов горения ведется на 1кг рабочего топлива при нормальных условиях (0оС и 101,3 кПа) по [6].
Теоретический объем сухого воздуха, необходимого для полного сгорания топлива при α=1, определяется по формуле
м3/кг.Теоретические объемы продуктов горения (при α=1):
объем трехатомных газов
м3/кг;объем водяных паров
м3/кг;объем азота
м3/кг;объем влажных газов
м3/кг;объем сухих газов
м3/кг.Действительные объемы воздуха и продуктов сгорания (при αух=1,4):
объем водяных паров
м3/кг;объем дымовых газов
м3/кг;объем сухих газов
м3/кг; м3/кг.Жаропроизводительность топлива – температура, до которой нагревались бы образующиеся продукты сгорания, если бы сгорание происходило в адиабатических условиях без подогрева воздуха и при стехиометрическом [соответствующем строго реакции горения (α=1)] расходе воздуха по [6].
Жаропроизводительность топлива без учета влаги в воздухе по [4]
где
=4,5563 м3/кг – объем влажных газов.Жаропроизводительность топлива с учетом влаги в воздухе по [4]
ºС.Жаропроизводительность топлива с учетом расхода теплоты на расплавление золы и влаги, содержащейся в воздухе по [4]:
ºС.Максимальное теплосодержание сухих продуктов горения топлива по[4]
ккал/м3.Изменение объема сухих продуктов горения в действительных условиях и при теоретических по[4]
.Соотношение объемов влажных и сухих продуктов горения при α=1 по[4]
Отношение средней теплоемкости не разбавленных воздухом продуктов горения в температурном интервале от 0ºС до tух=145ºС к их теплоемкости в температурном интервале 0ºС до tмакс=2042,26ºСпо табл. 14-12 [5] c' = 0,835.
Отношение средней теплоемкости 1м3 воздуха в температурном интервале от 0ºС до tух=145ºС к теплоемкости 1м3 неразбавленных воздухом продуктов горения в температурном интервале от 0ºС до tмакс =2042,26ºСпо табл. 14-12 [5] k = 0,79.
Содержание трехатомных газов в сухих газах по [4]
.Максимальное содержание трехатомных газов в сухих газах по[4]
.Составление теплового баланса котлоагрегата заключается в установлении равенства между поступившим в агрегат количеством теплоты, называемым располагаемой теплотой
, и суммой полезно использованной теплоты и тепловых потерь . На основании теплового баланса вычисляется КПД и необходимый расход топлива.Общее уравнение теплового баланса имеет вид (в абсолютных величинах), кДж/кг:
.Принимая
за 100%, находим составляющие баланса (qi) в относительных единицах. Тогда .КПД котлоагрегата (брутто) по обратному балансу
,где q2=6,22% – потери теплоты с уходящими газами; q3 = 0% – потери теплоты в котлоагрегате с химическим недожогом; q4 = 0,33% – потери теплоты в котлоагрегате от механической неполноты сгорания топлива; q5 = 0,935% – потери теплоты от наружного охлаждения; q6 = 0,00096% – потери с физической теплотой шлаков.
Относительная погрешность определения КПД котлоагрегата (брутто) методом обратного баланса составила:
.Потери теплоты с уходящими газами по [4]
,где tух=145ºС – температура уходящих газов;tхв=30ºС– температура холодного воздуха;t’макс =2015,86ºС – жаропроизводительность топлива с учетом влаги в воздухе;c'=0,835-отношение средней теплоемкости не разбавленных воздухом продуктов горения в температурном интервале от 0ºС до tух=145ºС к их теплоемкости в температурном интервале 0ºС до tмакс =2042,26ºСпо табл. 14-12 [5]; h – изменение объема сухих продуктов горения в реальных условиях и при теоритических;
– соотношение объемов влажных и сухих продуктов горения при α=1; k = 0,79 отношение средней теплоемкости 1м3 воздуха в температурном интервале от 0ºС до tух=145ºС к теплоемкости 1м3 неразбавленных воздухом продуктов горения в температурном интервале от 0ºС до tмакс =2042,26ºС по табл. 14-12 [5].