Процесс | l, кДж/кг | q, кДж/кг |
политропный | (P1×v1 – P2×v2) /(n – 1) | CП×ΔT |
изохорный | 0 | CV×ΔT |
изобарный | P×Δv = R×ΔT | CP×ΔT |
изотермический | P1×v1×ln(V2/V1) P1×v1×ln(P1/P2) | T×ΔS = R×T×ln(V2/V1) |
адиабатный | –Δu = (P1×v1 – P2×v2) /(k – 1) | 0 |
Теплоёмкость при политропном процессе равна:
(5.1)На рисунке ниже приведены политропные процессы в P – V и T – S координатах.
Рис. 2.1
Пример. Воздух, имеющий объем V = 0,01 м3, при Р1 = 10 бар и Т1 = = 298 К расширяется в цилиндре с подвижным поршнем до давления Р2 = 1 бар. Определить конечный объем, температуру, работу расширения, подведенное тепло, изменение внутренней энергии, энтальпии и энтропии, если расширение происходит: 1. изотермически; 2. адиабатически; 3. политропно с показателем политропы n = 1,3. Изобразить процесс в P – V и T – S координатах.
Решение:
Изотермическое расширение.
Объем в конце расширения:
V2 = V1 × (P1/P2) = 0,01 × (10/1) = 0,1 м3.
Работа расширения:
L = P1 × V1 × ln(P1/P2) = 106 × 0,01 × ln(10/1) = 23 кДж.
Количество подведенного тепла:
QT = L = 23 кДж.
Так как Т1 = Т2 = 298 К, то Δh = 0 и Δu = 0.
Изменение энтропии:
ΔS = Q/T = 23/298 = 0,07718 кДж/К.
Адиабатное расширение.
Масса газа в цилиндре:
m = (P1 × V1 × μ) /R × T1 = (106 × 0,01 × 2,896×10–2) /(8,314 × 298 К) = 0,117 кг.
Конечный объем:
V2 = V1 × (P1/P2) 1/k = 0,01 × (10/1) 1/1,4 = 0,0518 м3.
Температура воздуха в конце процесса:
T2 = T1 × (P2/P1) (k – 1) /k = 298 × (1/10) (1,4 – 1) /1,4 = 154,35 К.
Работа газа при расширении:
L = (P1 × V1 – P2 × V2) /(k – 1) = (106 × 0,01 – 105 × 0,0518) /(1,4 – 1) = 12 кДж.
Изменение в процессе составило:
Энтальпии:
Δh = CP × (T2 – T1) = 1,0189 × (154,35 – 298) = – 146,36 кДж/кг;
ΔH = m × Δh = 0,117 × (– 146,36) = – 17,12 кДж.
Внутренней энергии:
Δu = CV × (T2 – T1) = 0,7317 × (154,35 – 298) = – 105,11 кДж/кг;
ΔU = m × Δu = 0,117 × (– 105,11) = – 12,30 кДж.
При определении изменения функций состояния, ввиду значительного изменения температуры в процессе (298 – 154,35 = 146,65 К), пользуемся зависимостью теплоемкости от температуры C = f(T) (см. таблицу №3 приложения).
Политропное расширение с n = 1,3.
Конечный объем:
V2 = V1 × (P1/P2) 1/n = 0,01 × (10/1) 1/1,3 = 0,0588 м3.
Конечная температура:
T2 = T1 × (V1/V2) n – 1 = 298 × (0,01/0,0588) 1,3 – 1 = 175,15 K.
Работа газа при расширении:
L = (P1 × V1 – P2 × V2) /(n – 1) = (106 × 0,01 – 105 × 0,0588) /(1,3 – 1) = 13,7 кДж.
Количество подведенного тепла:
qП = CV × [(n – k) /(n – 1)] × (T2 – T1) = 0,7317 × [(1,3 – 1,4) /(1,3 – 1)] × (175,15 – – 298) = 29,96 кДж/кг;
QП = m × qП = 0,117 × 29,96 = 3,51 кДж.
Рис. 2.2.
Изменение в процессе составило:
Энтальпии:
Δh = CP × (T2 – T1) = 1,0189 × (175,15 – 298) = – 125,17 кДж/кг;
ΔH = m × Δh = 0,117 × (–125,17) = – 14,64 кДж.
Внутренней энергии:
Δu = CV × (T2 – T1) = 0,7317 × (175,15 – 298) = – 89,89 кДж/кг;
ΔU = m × Δu = 0,117 × (–89,89) = – 10,52 кДж.
Задачи для самостоятельного решения.
Задача № 2-1. В замкнутом помещении объемом V = 25 м3 находится воздух при давлении Р1 = 730 ммHg и температуре Т1 = 283 К. В результате подвода тепла давление возросло до Р2 = 2,3 бар. Определить количество подведенного тепла QV, изменение внутренней энергии ΔU и энтальпии ΔH.
Задача № 2-2.6. кг азота совершают в процессе изобарического расширения работу LР = 343 кДж. Определить изменения внутренней энергии азота, если начальная температура его равна Т1 = 373 К.
Задача № 2-3. Оксид углерода находится при избыточном давлении РМ = 3,92 бар и занимает объем V = 5 м3, барометрическое давление при этом равно РБ = 755 ммHg. Определить изменение внутренней энергии и величину затраченной работы, если оксид углерода будет изобарически охлажден от Т1 = 573 К до Т2 = 373 К.
Задача № 2-4. Как изменится внутренняя энергия и энтальпия 20 нм3 кислорода при изобарическом нагревании от 373 К до 1173 К, если давление Р = 9,8 бар. Какова совершенная газом работа?
Задача № 2-5.0,6 нм3 воздуха при изобарическом подводе тепла совершает работу LР = 15,68 кДж. Определить температуру Т2 и объем воздуха V, если в начальном состоянии его температура и давление были соответственно равны Р1 = 4,42 бар и Т1 = 293 К.
Задача № 2-6. Кислород при температуре Т1 = 353 К и давлении РВ равном 320 ммHg сжимается при Т = Const до избыточного давления РМ = 12 бар. Во сколько раз уменьшается объем кислорода, если барометрическое давление РБ = 745 ммHg?
Задача № 2-7. 10 кг кислорода расширяются при Т = 423 К = Const от начального давления Р1 = 14,7 бар и производят работу LT = 2969,4 кДж. Определить давление в конце расширения и изобразить процесс в P – V и T – S координатах.
Задача № 2-8. В цилиндре с подвижным поршнем заключено 3,5 м3 азота при давлении Р1 = 1,47 бар. В процессе изотермического сжатия отводится 461 кДж тепла. Определить давление Р2 и объем V2 азота в конце сжатия.
Задача № 2-9. 0,4 кг воздуха при Т1 = 573 К и Р1 = 1,98 бар расширяются изотермически до V2 = 1,68 м3/кг, а затем сжимаются изобарически и, наконец, путем изохорического нагревания, снова возвращаются в исходное состояние. Определить для каждого процесса ΔH, ΔS, ΔU, а также тепло и работу L. Определить также параметры (P, v, T) для всех точек и изобразить процессы в P – V и T – S координатах.
Задача № 2-10. 0,3 нм3 воздуха изотермически сжимаются от начального состояния Р1 = 7,35 бар, Т1 = 573К до некоторого конечного состояния Р2, V2. Определить значения Р2 и V2, если известно, что в процессе изотермического сжатия было отведено 167,6 кДж тепла. Определить также изменение внутренней энергии и энтальпии воздуха.
Задача № 2-11. 1. нм3 воздуха адиабатически расширяется от начального состояния 1 (Р1 = 6 ата, t1 = 300 °C) до состояния, причем V2 = 3V3; затем он сжимается изотермически до начального значения удельного объема V3 = V1. Определить параметры (P, v, T) точек 1, 2 и 3 и суммарную работу, произведенную газом. Представить процесс в P – V и T – S координатах.
Задача № 2-12. Работа затраченная на адиабатное сжатие 3 кг воздуха, составляет (– 471) кДж. Начальное состояние воздуха характеризуется параметрами Т1 = 288 К и Р1 = 1 бар. Определить конечную температуру и изменение внутренней энергии.
Задача № 2-13. 1. кг воздуха при давлении Р1 = 4 бар и температуре Т1 = 373 К расширяется до давления Р2 = 1 бар. Определить конечную температуру, количество тепла и совершенную работу, если расширение происходит: а) изохорно, б) изотермически, в) адиабатно и г) политропно с показателем n = 1,2. Изобразить процесс в P – V и T – S координатах.
Задача № 2-14. В баллоне емкостью 100 л находится воздух при давлении Р1 = 50 бар и температуре Т1 = 293 К. Давление окружающей среды Р2 = 1 бар. Определить полезную работу, которая может быть произведена воздухом при его расширении до давления окружающей среды по изотерме и по адиабате, а также конечную температуру воздуха в баллоне после адиабатного расширения.
Задача № 2-15. 1 кг воздуха при температуре Т1 = 290 К сжимается адиабатически до объема, составляющего 1/5 начального, а затем расширяется изотермически до первоначального объема. Определить работу, произведенную воздухом в результате обоих процессов. Изобразить процесс в P – V и T – S координатах.
Задача № 2-16. При политропном расширении 1 киломоля газа его объем увеличился на 20%, а абсолютная температура уменьшилась на 12%. Определить показатель политропы, величину работы lП кДж/моль, если Т1 = = 490 К.
Задача № 2-17. К 1 кг воздуха при его сжатии в политропном процессе подведено 50 кДж/кг тепла. Определить показатель политропы, изменение внутренней энергии и работу сжатия, если температура воздуха увеличилась в процессе на 100 К.
Задача № 2-18. 1 кг азота в начальном состоянии имеет параметры Р1 = 25 бар и Т1 = 973 К. После политропного расширения (n = 1,18) давление азота становится равным Р2 = 105 Н/м2. Определить ΔU, ΔН в процессе, а также количество тепла qП и работу расширения lП.