Смекни!
smekni.com

Термодинамика растворов неметаллов в металлических расплавах (стр. 2 из 6)

Практически важным, с точки зрения выбора конструкционных материалов жидкометаллических систем энергетических установок, является метод прогнозирования направления преимущественного переноса массы в гетерогенной системе с помощью параметров взаимодействия между компонентами в многокомпонентном расплаве.

Метод расчета равновесной концентрации неметаллического компонента керамического материала в бинарном металлическом расплаве, основанный на использовании уравнений обобщенной координационно-кластерной модели, позволяет в значительной степени сократить объем экспериментальных исследований по оценке совместимости рассматриваемого материала с металлическим расплавом.


Основные положения, выносимые на защиту.

1. Обобщенная координационно-кластерная модель для описания взаимодействий и расчета термодинамических характеристик раствора неметалла в расплаве из трех металлических компонентов.

2. Результаты расчетно-теоретической оценки влияния добавок четвертого компонента на термодинамические характеристики трития в расплавах системы литий – свинец.

3. Метод прогнозирования направления изотермического переноса массы в статических условиях в расплавах, содержащих неметаллические примеси.

4. Метод расчета равновесной концентрации неметаллического компонента керамического материала в бинарном металлическом расплаве, позволяющий определять области температур и составов жидкой фазы, где рассматриваемый материал и расплав совместимы друг с другом.

5. Метод расчета поверхностного натяжения и состава поверхности бинарных металлических расплавов с помощью уравнений квазихимической модели, позволяющий учесть существование ближнего упорядочения в объеме и на поверхности расплавов.

Апробация работы. Основные результаты диссертации докладывались на III Всесоюзной конференции по исследованию и разработке конструкционных материалов для реакторов термоядерного синтеза (Ленинград, 1984 г.), 2-ой международной конференции "Радиационное воздействие на материалы термоядерных реакторов" (СПб, 1992 г.), международной конференции Liquid Metalal Systems – Material Behavior and Physical Chemistry in Liquid Metalal Systems II, March 16-18, 1993, Karlsruhe, Germany, 5-ой международной конференции Tritium Technology in Fission, Fusion and Isotopic Applications, 28 May–3 June 1995, Lake Maggiore, Italy, 8-ой международной конференции Eight International Conference on Fussion Reactor Materials, October 26–31,1997, Sendai, Japan, 6-ой международной конференции 6th International Conference on Tritium Science and Technology, November 11-16, 2001, Tsukuba, Japan и научно-практической интернет-конференции "Техника, технология и перспективные материалы" (Москва, 2002 г.).

Публикации. По основным результатам диссертации опубликовано 27 работ.

Объем и структура работы. Диссертация состоит из введения, шести глав, заключения, списка литературы из 214 наименований, содержит 67 рисунков и 52 таблицы. Общий объем диссертации составляет 290 страниц машинописного текста.


Обобщенная координационно-кластерная модель для

описания четырехкомпонентных систем

Известно, что в жидких и твердых телах при температурах, близких к температуре плавления, межатомные расстояния и координационные числа отличаются несущественно. Это позволяет и в случае металлических расплавов при обсуждении типов упаковки атомов в жидкости говорить о существовании октаэдрических и тетраэдрических пустот в разупорядоченных (т. е. не обладающих дальним порядком) структурах. Если для твердых растворов металлоидов эти пустоты принято называть позициями внедрения, то при описании структуры жидкостей[1] и аморфных тел чаще применяется термин “квазимеждоузлия”.

Приступая к рассмотрению разбавленных растворов неметаллов в расплавах, содержащих три металлических компонента, необходимо отметить, что все энергетические эффекты, сопровождающие процесс растворения атома металлоида в расплаве, можно отнести к трем типам:

1. Связанные с взаимодействием растворенного атома (неметалла) с соседними атомами растворителя.

2. Обусловленные взаимодействием между соседними атомами растворителя, находящимися в первой координационной сфере вокруг атома металлоида.

3. Связанные с неэквивалентностью энергетических состояний

атомов растворителя, находящихся в первой координационной сфере вокруг атома неметалла, и атомов этого же элемента, находящихся в “объеме” расплава (т. е. вне первой координационной сферы вокруг атома металлоида).

В дальнейшем предполагается, что атомы неметалла А4 в жидком разбавленном растворе трех металлов А1, А2 и А3 занимают “квазимеждоузлия” с координационным числом z. Каждый атом А4 в растворе в качестве ближайших соседей имеет j атомов А1, k атомов А2 и l атомов А3

. В растворе существует (z+1)(z+2)/2 видов таких конфигураций, которые называются кластерами и обозначаются
. При этом надо учитывать, что в расплаве атомы находятся в непрерывном движении, так что имеет смысл говорить об усредненной в течение некоторого времени[2]tконфигурации атомов.

В расплаве можно выделить две области. Первая область, которую обозначим “B”, содержит все металлические атомы, не имеющие в качестве ближайших соседей атомов А4. При рассмотрении разбавленных растворов металлоидов, в область “B” попадает большая часть атомов расплава. Вторая область, которую обозначим “C”, состоит из атомов А1, А2 и А3, которые в качестве ближайших соседей имеют атомы А4. Очевидно, атомы металлоида также входят в область “C”.

Если рассматривать расплавы системы А1 - А2 - А3 - А4 с различным содержанием компонентов, то в расплаве произвольного состава при данной температуре будет устанавливаться строго определенное равновесное распределение атомов А4 по кластерам, которое может быть охарактеризовано набором некоторых величин cj,k , где каждая из cj,kесть ни что иное, как доля атомов компонента А4, находящихся в конфигурации

.

При изменении температуры (или состава) в расплаве устанавливается новое равновесное распределение cj,k. В этом случае процесс перехода расплава в новое положение равновесия можно представить в виде набора уравнений реакций следующего вида (количество уравнений кратно числу различных типов кластеров в системе):

+ А2(“B”) =
+ А1(“B”)

+ А3(“B”) =
+ А3(“B”) (1)

Для коэффициента термодинамической активности металлоида в разбавленном в растворе из трех металлических компонентов получено следующее уравнение

, (2)

где

коэффициент термодинамической активности A4 в четырехкомпонентном расплаве; γ1(1-2-3), γ2(1-2-3), γ3(1-2-3) коэффициенты термодинамической активности компонентов тройной системы А1А2А3 ; γ4(1), γ4(2), γ4(3) – коэффициенты термодинамической активности А4 в двойных расплавах А1А4, А2А4 и А3А4соответственно;
сочетания из z элементов по j ; x1, x2, x3 – мольные доли металлических компонентов в четырехкомпонентном расплаве; h12 ,h23 и h13 – энергетические параметры (константы для тройных систем А1–А2–А4, А2–А3–А4 и А1–А3–А4 при каждой температуре), учитывающие нелинейный характер зависимости смещения электронной плотности между компонентами кластера от его состава; t– параметр, принимающий значения в пределах от 0,25 до 0,5 и учитывающий ослабление связей типа металл-металл для атомов, находящихся в первой координационной сфере вокруг атома А4.

Для концентраций кластеров различного типа получены следующие уравнения в котором количество слагаемых совпадает с количеством типов кластеров, различного состава и равно (z+1)(z+2)/2.


, (3)

где j= 0,1,…z; k= 0,1,…z; j+kz .

Очевидно, должно выполняться соотношение

, (4)

Необходимо сделать некоторые замечания, относящиеся к определенной группе четырехкомпонентных расплавов. Если в системе А1–А2–А3–А4концентрации компонентов A1 и A2 могут изменяться в широких пределах, а концентрации A3 и A4 не превышают 1-2 % ат., то влияние третьего металлического компонента на термодинамическую активность металлоида A4 в расплаве удобно оценивать с помощью удельного параметра взаимодействия σ34, который определяется следующим образом