Для количественной оценки работы идеального теплового двигателя, в котором отсутствуют потери на трение, пропуски через не плотности, излучение вводится отношение
,называемое термическим коэффициентом полезного действия. Этот коэффициент измеряет количество полезной работы на единицу подведенного тепла.
3.4.1. Изохорный процесс. Уравнение изохоры - v = const .
Для этого процесса связь между термическими параметрами начального и конечного состояний газа выражается законом Шарля
.В этом процессе все подводимое тепло расходуется на изменение внутренней энергии, так как газ работы не совершает
, кДж/кг .Изменение энтропии,
.3.4.2. Изобарный процесс. Уравнение изобары - р = const.
Для этого процесса связь между термическими параметрами начального и конечного состояний выражается законом Гей-Люссака
: .Работа изменения объема газа, кДж/кг
Уравнение первого закона термодинамики для процесса
.В изобарном процессе все подводимое тепло расходуется на изменение энтальпии газа, кДж/кг
.Изменение энтропии, кДж/(кг·К)
.3.4.3. Изотермический процесс. Уравнение изотермы -
.Для этого процесса справедлив закон Бойля – Мариотта
. Зависимость между начальными и конечными параметрами .Работу 1 кг газа можно определить, используя уравнения
.Внутренняя энергия в изотермическом процессе не изменяется, поэтому
.Количество тепла, сообщаемое газу или отнимаемого от него:
.Изменение энтальпии равно нулю
.Изменение энтропии
3.4.4. Адиабатный процесс.
Адиабатным называется процесс, протекающий без теплообмена между рабочим телом и окружающей средой
. – уравнение адиабаты, где – показатель адиабаты .Зависимость между начальными и конечными параметрами процесса:
,Количество теплоты для данного процесса
, тогда уравнение первого закона термодинамики для адиабатного процесса ,следовательно, изменение внутренней энергии
.Работа расширения совершается из–за убыли внутренней энергии при сжатии же расходуется на повышение внутренней энергии:
или .Изменение энтропии
.3.4.5. Политропный процесс
Политропными называются процессы, в которых теплоемкость имеет любое, но постоянное на протяжении всего процесса значение
. – уравнение политропы, где n – показатель политропы ,где
– теплоемкость политропного процесса, .Зависимость между начальными и конечными параметрами процесса
,Работу в политропном процессе можно определить, используя уравнения:
или , .Количество теплоты, сообщаемого газу или отнимаемого от него, кДж/кг
.Изменение внутренней энергии
или .Изменение энтропии в политропном процессе
.В данной работе адиабатный и политропный процессы отсутствуют.
3.5. Результат расчета термодинамических процессов газового цикла приводится в табл. 3.
Таблица 3
Расчет термодинамических процессов газового цикла
Параметр Процессы | |||||
1 - 2 | |||||
2 - 3 | |||||
3 - 4 | |||||
4 - 5 | |||||
5 - 1 |
4. Анализ эффективности цикла
4.1 Определение работы цикла
.(4.1.)Подведенное количество теплоты (
), складывается из положительных численных значений количества теплоты, а отведенное количество теплоты ( )наоборот, из отрицательных (табл. 3). В формуле (4.1.) нужно брать по абсолютной величине.4.2. Определение полезноиспользованного тепла
(см. п. 3.4.) .4.3. Определение термического к.п.д. газового цикла
.5. Проверка правильности расчета газового цикла
Изменение внутренней энергии, энтальпии и энтропии являются функциями состояния и зависят только от начального и конечного состояния процесса, для кругового цикла в целом они будут равны нулю. Поэтому просуммируйте
по циклу. Работа же является функцией процесса, и будет определяться количеством подведенного и отведенного тепла.6. Построение термодинамического газового цикла в TS – диаграмме
По оси абсцисс откладываются в масштабе численные значения энтропии, а по оси ординат температуры. Принимая точку 1 (начало) произвольно на оси абсцисс, но соответствующую для данной точке 1 на оси ординат температуре, от нее откладываем влево отрицательные значения изменение энтропии (
), а вправо - положительные значения, согласно выбранного масштаба. Температуры должны соответствовать табл.1 для данной точки линии процесса. Последовательно откладывая значения температур и, соответственно, для линии процесса, строим замкнутый цикл, полагая, что конец данного процесса, является началом следующего.7. Построение промежуточных точек процессов цикла в рv- и Тs- диаграммах
Для построения процессов криволинейной зависимости изотермического процесса в рv-, изобарного и изохорного в Тs-диаграммах нужно задаться параметрами (давлением или объемом) промежуточных точек цикла. Например, давлением, и определить удельный объем в этой точке.