Можна сказати що в певному значенні ми приходимо до свого роду узагальненому дарвенізму, дія якого розпізнається не тільки на органічний,но і на неорганічний світ : виникнення макроскопічних структур обумовлених народженням колективних мод під впливом флуктуацій, їх конкуренцією і, нарешті, відбором «найбільш пристосованої» моди або комбінації таких мод.
Ясно, що вирішальну роль грає параметр «час».
Отже, ми повинні досліджувати еволюцію систем в часі. Саме тому рівняння, що цікавлять нас, іноді називають «еволюційними».
2.1 ЗАГАЛЬНА ХАРАКТЕРИСТИКА ВІДКРИТИХ СИСТЕМ
Відкриті системи - це термодинамічні системи, які обмінюються з навколишніми тілами ( середовищем ), речовиною, енергією і імпульсом . Якщо відхилення відкритої системи від стану рівноваги невелике, то нерівно важний стан можна описати тими ж параметрами (температура, хімічний потенціал та інші), що і рівноважне . Проте відхилення параметрів від рівноважних значень викликають потоки речовини і енергії в системі . Такі процеси перенесення приводять до виробництва ентропії . Прикладами відкритих систем є : біологічні системи, включаючи клітку, системи обробки інформації в кібернетиці, системи енергопостачання та інші . Для підтримки життя в системах від клітки до людини необхідний постійний обмін енергією і речовиною з навколишнім середовищем . Отже живі організми є системами відкритими, аналогічно і з іншими приведеними параметрами. Прігожіним в 1945 році був сформульований розширений варіант термодинаміки.
У відкритій системі зміну ентропії можна розбити на суму двох внесків
d S = d Se + d Si(2.1)
Тут d Se- потік ентропії, обумовлений обміном енергією і речовиною з навколишнім середовищем, d Si- виробництво ентропії усередині системи (мал. 2.1).
Мал. 2.1. Схематичне представлення відкритих
систем : виробництво і потік ентропії.
Х - набір характеристик :
З - склад системи і зовнішнього середовища ;
Р - тиск ; Т - температура.
Отже, відкрита система відрізняється від ізольованої наявністю члена у виразі для зміни ентропії, відповідної обміну . При цьому знак члена d Seможе бути будь-яким у відмінності від d Si .
Для нерівноважного стану :
S < Smax
Нерівноважний стан більш высокоорганизованно, ніж рівноважне, для якого
S = Smax
Таким чином еволюцію до вищого порядку можна представити як процес, в якому система досягає стану з нижчою ентропією в порівнянні з початковою.
Фундаментальна теорема про виробництво ентропії у відкритій системі з незалежними від часу краєвими умовами була сформульована Прігожіним: у лінійній області система еволюціонує до стаціонарного стану, що характеризується мінімальним виробництвом ентропії, сумісним з накладеними граничними умовами .
Отже стан всякої лінійної відкритої системи з незалежними від часу краєвими умовами завжди змінюється у напрямі зменшення виробництва ентропії P = d S / d t поки не буде досягнуте стан поточної рівноваги, при якій виробництво ентропії мінімальне :
d P < 0 (умова еволюції)
P = min, d P = 0 (умова поточної рівноваги)
d P/ d t < 0 (2.2)
2.1.1ДИССИПАТИВНІ СТРУКТУРИ
Кожна система складається з елементів (підсистем). Ці елементи знаходяться в певному порядку і зв'язані певними відносинами. Структуру системи можна назвати організацію елементів і характер зв'язку між ними.
У реальних фізичних системах є просторові і тимчасові структури .
Формування структури - це виникнення нових властивостей і відносин в безлічі елементів системи . У процесах формування структур грають важливу роль поняття і принципи :
1. Постійний негативний потік ентропії .
2. Полягання системи в далечіні від рівноваги .
3. Нелінійність рівнянь тих, що описують процеси .
4. Колективна (кооперативне) поведінка підсистем .
5. Універсальний критерій еволюції Прігожіна - Гленсдорфа.
Формування структур при необоротних процесах повинне супроводжуватися якісним стрибком (фазовим переходом) при досягненні в системі критичних значень параметрів. У відкритих системах зовнішній внесок в ентропію (2.1) d S в принципі можна вибрати довільно, змінюючи відповідним чином параметри системи і властивості навколишнього середовища . Зокрема ентропія може зменшуватися за рахунок віддачі ентропії в зовнішнє середовище, тобто коли d S < 0 . Це може відбуватися, якщо вилучення з системи в одиницю часу перевищує виробництво ентропії усередині системи, тобто
dS dSedSi¾ < 0, якщо > > 0 (2.3)¾ d t dtdt
Щоб почати формування структури, віддача ентропії повинна перевищити деяке критичне значення . У сильно нерівноважній відстані змінні системи задовольняють нелінійним рівнянням.
Таким чином, можна виділити два основні класи необоротних процесів:
1. Знищення структури поблизу положення рівноваги . Це універсальна властивість систем за довільних умов .
2. Народження структури далеко від рівноваги у відкритій системі за особливих критичних зовнішніх умов і при нелінійної внутрішньої динаміки. Ця властивість не універсальна.
Просторові, тимчасові або просторово-часові структури, які можуть виникати далеко від рівноваги в нелінійній області при критичних значеннях параметрів системи називаються дисипативними структурами.
У цих структурах взаємозв'язані три аспекти :
1. Функція стану, що виражається рівняннями .
2. Просторово - тимчасова структура, що виникає із-за нестійкості .
3. Флуктуації, відповідальні за нестійкості .
Мал. 1. Три аспекти дисипативних структур.
Взаємодії між цими аспектами приводить до несподіваних явищ - до виникнення порядку через флуктуації, формуванню високоорганізованої структури з хаосу.
Таким чином, в дисипативних структурах відбувається становлення з буття, формується те, що виникає з того, що існує.
2.2 САМООРГАНІЗАЦІЯ РІЗНИХ СІСТЕМ І СИНЕРГЕТІКА
Перехід від хаосу до порядку, що відбувається при зміні значень параметрів від до критичних до надкритичних, змінює симетрію системи . По цьому такий перехід аналогічний термодинамічним фазовим переходам . Переходи в нерівноважних процесах називаються кінетичними фазовими переходами. У близи нерівноважних фазових переходів не існує несуперечливого макроскопічного опису. Флуктуації такі ж важливі, як і середнє значенні. Наприклад, макроскопічні флуктуації можуть приводити до нових типів не устойчивостей.
Отже, в далечіні від рівноваги між хімічною, кінетичною і просторово-часовою структурою реагуючих систем існує несподіваний зв'язок . Правда, взаємодія, що визначають взаємодію констант швидкостей і коефіцієнтів перенесення, обумовлені короткодіючими силами (силами валентності, водневими зв'язками і силами Ван-Дер-Ваальса). Проте вирішення відповідних рівнянь залежать, крім того, від глобальних характеристик. Для виникнення дисипативних структур зазвичай потрібний, щоб розміри системи перевищували деяке критичне значення - складну функцію параметрів, що описують реакційно-дифузійні процеси . Ми можемо по цьому стверджувати, що хімічні нестійкості задають подальший порядок, за допомогою якого система діє як ціле .
Якщо врахувати дифузію, то математичне формулювання проблем, пов'язаних з дисипативними структурами, зажадає вивченні диференціальних рівнянь в приватних похідних. Дійсно, еволюція
концентрації компонент Х з часом визначається рівнянням вигляду (2.4)де перший член дає внесок хімічних реакцій в зміні концентрації Хi і зазвичай має простий полиноминальный вигляд, а другий член означає дифузію уздовж осі r.
Дійсно вражаюче, як багато різноманітних явищ описує реакційно-дифузне рівняння (2.4 ), по цьому цікаво розглянути ² основне рішення, яке б відповідала термодинамічній гілці . Інші рішення можна було б отримувати при не послідовних устойчивостях, що виникають у міру видалення від стану рівноваги. Нестійкості такого типу зручно вивчати методами теорії біфуркації [Николіс і Прігожін, 1977]. В принципі, біфуркація є щось інше, як виникнення при деякому критичному значенні параметра нового вирішення рівнянь . Припустимо, що ми маємо хімічну реакцію, відповідну кінетичному рівнянню [ Маклейн і Уоліс, 1974] .
d X ¾ = а X (X-R) (2.5)¾ d t
Ясно що при R < 0 існує тільки одне рішення, незалежне від часу, X = 0. У точці R = 0 відбувається біфуркація, і з'являється нове рішення X = R.
Мал. 2.3. Біфуркационная диограмма для рівняння ( 2.5.)
Суцільна лінія відповідає стійкій гілці
крапки - нестійкої гілки
Аналіз стійкості в лінійному наближенні дозволяє перевірити, що рішення X = 0 під час переходу через R = 0 стає нестійким, а рішення X = R - стійким . Загалом випадки при зростанні деякого характеристичного параметра р відбуваються послідовні біфуркації . На малюнку 2.4. показано єдине рішення при р = р1, але при р = р2 єдиністю поступається місце множинним рішення.
Цікаво відзначити, що біфуркація в деякому розумінні вводить у фізику і в хімію, історію - елемент, який раніше вважався прерогативою наук що займаються вивченням біологічним, суспільних і культурних явищ .
Мал. 2.4. Послідовні біфуркації:
А і А1 - точки первинних біфуркацій з термодинамічній гілці
У і В1 - точки вторинної біфуркації
Відомо, що при зміні параметрів, що управляють, в системі спостерігаються різноманітні перехідні явища. Виділимо тепер з цих спостережень певні загальні риси, характерні для великого числа інших переходів у физико хімічних системах.